
PHP Web Services, part 2

Last time: intro

• Using the JSON representation for data communicated across the
Internet (XML is another way)

• How PHP makes it easy to convert from PHP arrays to/from JSON
• Web services using JSON on the wire

– For ch05_guitar_shop, redone, to be working example

• Ch05_guitar_shop, ch05_gs for short, now has client and server
projects
– Client: ch05_gs_client sends in web service requests

• Uses Guzzle PHP component

– Server: ch05_gs_server answers web service requests
• Uses Slim PHP component

• Testing Web Services using command-line curl (not yet fully
covered)

Provided ch05_gs_client/server

• Ch05_guitar_shop has been modified to use REST web
services to access its data, to serve as a complete example
for PHP web services.

• We’ll call it ch05_gs for short—

ch05_gs_client------------------ch05_gs_server
PHP HTTP, JSON PHP

• Ch05_gs_client uses REST web services to access the
database data, with the help of Guzzle.
– Otherwise it’s the same as the old ch05_guitar_shop.

• Ch05_gs_server manages the database and answers the
web service requests, with the help of Slim.
– It has no user interface itself: it only answers web requests

Provided ch05_gs_client/server

Adding the browser to the picture: a client of gs_client:

Browser ------------ch05_gs_client-----------ch05_gs_server
HTTP, HTML PHP HTTP, JSON PHP

• So ch05_gs_client is both a server relative to the
browser and a client relative to the REST server:
– A server to the browser: user clicks a link, browser sends

GET to /cs637/user/ch05_gs_client/product_manager, gets
back HTML

– A client to the REST server: ch05_gs_client needs a list of
all toppings, sends GET to the REST server at
/cs637/user/ch05_gs_server/api/toppings, gets back JSON

Slim component for REST servers
Minimal index.php for a Slim server: the “Hello World” of Slim…
<?php

use \Psr\Http\Message\ServerRequestInterface as Request;

use \Psr\Http\Message\ResponseInterface as Response;

require '../vendor/autoload.php';

$app = new \Slim\App;

$app->get('/hello/{name}', function (Request $request,
Response $response, array $args) {

$name = $args['name'];

$response->getBody()->write("Hello, $name");

return $response;

});

$app->run();

• If this file is at /service/api/index.php in the server, with access to the Slim
code, a GET request to http://example.com/service/api/hello/Betty will
answer “Hello Betty”

• See Slim Tutorial for full discussion of this code.

http://example.com/service/api/hello/Betty
http://www.slimframework.com/docs/v3/tutorial/first-app.html

Slim server directory setup

Top-level dir (service here):
• composer.json: say we need php 5.5+, slim v3:
{

"require": {
"php": ">=5.5",
"slim/slim": "^3.12"

}
}

• composer tool (installed using apt-get on pe07)
– Use: “composer install” downloads Slim v3

• vendor: directory of component code
– Is created and filled by composer

• api: directory with index.php, .htaccess
– .htaccess: tell Apache webserver to route requests to index.php (requests with

paths going to this directory, like /service/api/foo)

• This is all set up on pe07’s apache server in /var/www/html/service

Only needed to
set up project,
could delete after
that.

Trying it out

pe07$ curl localhost/service/api/hello/Betty

Hello, Bettype07$

pe07$ curl localhost/service/api/hello/Slim_works_great

Hello, Slim_works_greatpe07$

To see important response info, use –i:

pe07$ curl -i localhost/service/api/hello/Betty

HTTP/1.1 200 OK

Date: Sun, 15 Nov 2020 20:30:05 GMT

Server: Apache/2.4.18 (Ubuntu)

Content-Length: 12

Content-Type: text/html; charset=UTF-8

Hello, Bettype07$

Slightly bigger server

<?php

use \Psr\Http\Message\ServerRequestInterface as Request;

use \Psr\Http\Message\ResponseInterface as Response;

require '../vendor/autoload.php';

$app = new \Slim\App;

$app->get('/hello/{name}', getHello);

$app->post('/hello/poke', postPoke);

$app->run();

function getHello(Request $request,
Response $response, array $args) {

$name = $args['name'];

$response->getBody()->write("Hello, $name");

return $response;

});

function postPoke(Request $request, Response $response) {

error_log('saw poke');

$response->getBody()->write(“OK");

return $response;

}

But we want to read and write JSON data…

API setup

Idea of middleware
• All our responses need certain headers:

– Content-type: application/json
– Allow: 'GET, POST, PUT, DELETE‘ if we want to use more HTTP verbs than just GET

and POST
– Headers for CORS (cross origin resource sharing), so client browser can get

HTML/PHP/JS from one server and this data from another

• The Slim middleware lets us specify this in one place and adds these headers
on the way out. We just code (ignoring CORS here, see online code for that):

$app->add(function ($req, $res, $next) {

$response = $next($req, $res);

return $response->withHeader('Content-Type', 'application/json')

->withHeader('Allow', 'GET, POST, PUT, DELETE');

});

• The idea in general is that there is a chain of these functions, each fiddling
with the response and then passing it to the next one. We are using only one
such function.

• Note the chained method invocations: each method of $response returns the
modified $response object.

PHP JSON Functions

• json_encode Returns the JSON

representation of a PHP value

• json_decode Decodes a JSON string to PHP

• json_last_error Returns the last error

• For a $product:
$product_json = json_encode($product)

$product = json_decode($product_json, true);

REST Ch05_guitar_shop

REST API for project:

GET /categories

GET /categories/{category}/products

GET /categories/{category}/products/{pid}

POST /categories/{category}/products

DELETE /categories/{category}/products/{pid}

Examples:

GET /categories/guitars/products // get all guitars

POST /categories/guitars/products // add a guitar

DELETE /categories/basses/products/2 // delete bass 2

Now we consider how to implement these services

API implementation in brief
GET /categories

Get categories from DB, encode them in JSON array of objects and return it

GET /categories/{category}/products

Get products from DB for specified category, encode them in JSON array and
return it

GET /categories/{category}/products/{pid}

Get product pid from DB, encode it in JSON object and return it

POST /categories/{category}/products

Get product in JSON from client, decode it and put it in the DB, return new URL in
Location header

DELETE /categories/{category}/products/{pid}

Delete product pid in DB

Slim routes for API

$app->get('/categories', 'getCategories');

$app->get('/categories/{cat}/products',
'getProductsByCategory');

$app->get('/categories/{cat}/products/{id}',
'getProduct');

$app->post('/categories/{cat}/products', 'postProduct');

$app->delete('/categories/{cat}/products/{id}',

'deleteProduct');

• Here we see two named placeholders, {cat} and {id}.

• Slim will parse the incoming URL for us.

• For example, for url ‘/categories/Basses/products/8’ we would have
$args[‘cat’] = ‘Basses’ and $args[1] = 8 if we provide $args as the
third function parameter in for getProduct, i.e., get Product($request,
$response, $args)

REST Web service: the challenge of
handling so many different URLs

• We have been writing server code all along.
• Example: GET to /cs637/user/pizza1/toppings/ is handled by

/cs637/user/pizza1/toppings/index.php via a web server rule

• Now want GET to …/ch05_gs_server/api/categories and a POST to
…/ch05_gs_server/api/categories/Basses/products/8 and … to be
handled by …/ch05_gs_server/api/index.php

• How can we get the web server to follow a new rule?
• Answer depends on the web server: we’re using Apache

• The file api/.htaccess does the job, along with the addition of the
“rewrite module” and its configuration
o As “dot file”, not listed by ls command in Linux/Mac
o Need to use ls –a to see it on Linux/Mac
o See its contents in project: uses “regex” in rule
o Bottom line: causes any request with local path starting with

…/xxx_server/api/ to be handled by xxx_server/api/index.php

Use of json_encode in ch05_gs_server:

getProduct(…) with error handling
$productJSON = json_encode($product);

if ($productJSON === FALSE) { // encode failed

$errorJSON = '{"error":{"text":JSON encode error' .
json_last_error_msg() . ‘}}’;

error_log("server error $errorJSON");

return $response->withStatus(500) // server error

->write($errorJSON);

}

return $response->withStatus(200) // success

->write($productJSON);

• HTTP response code 500: Internal Server Error
– “Server encountered an unexpected condition that prevented it from fulfilling the

request”

– Here the server couldn’t encode its own database data: server error

• Note how Slim’s $response uses chained methods to specify various
response details: each returns a new $response object.

• Since the requestor expects JSON back, we put the error message in
JSON, and log it too.

Use of json_decode in ch05_gs_server

• Since the incoming data of a POST request is in JSON, we would expect to
use json_decode to turn it into a PHP array
 but in fact Slim will do this for us…

function postProduct($request, $response) {

try {
error_log("server postProduct"); good idea to say “server”

error_log("server: body: " . $request->getBody());

$product = $request->getParsedBody(); // Slim does
JSON_decode here

error_log('server: parsed product = ' .
print_r($product, true));

• To show we can access the incoming JSON, we put its body in the error_log

• Then we get what we really want, the parsed body, i.e. the PHP array
representing the incoming product.

• Note the generality of “Parsed” here: the request must have the content-
type header saying that it is JSON to get the right kind of parsing.

Use of json_decode in ch05_gs_server:

error handling
• Continuing in postProduct: should check return value, log error,

send back appropriate failure to client

if ($product == NULL) { // parse failed (bad JSON)

$errorJSON = '{"error":{"text":"bad JSON in

request"}}';

error_log("server error $errorJSON");

return $response->withStatus(400) //client error

->write($errorJSON);

}

• Note: return value for failure of json_decode is different from that of
json_encode! (FALSE vs. NULL)

• Using HTTP response code 400: Bad request

– Request could not be understood by the server due to bad syntax.

– Or maybe the client sent in the request with the wrong content-type

– The server is blaming the client here, probably correctly

Continuing in postProduct of
ch05_gs_server: db insert, json_encode
$db = getConnection();

$productID = addProduct($db, $product['categoryID'],
$product['productCode'], $product['productName'],
$product['listPrice']);

$product['productID'] = $productID; // fix up id to
current one

//echo json_encode($product); // doesn't provide
location header

$location = $request->getUri() . '/' .
$product["productID"];

return $response->withHeader('Location', $location)

->withStatus(200)

->write(json_encode($product));

• Here we add the product to the server’s mysql database

• Then we could just “echo json_encode($product)” to send it back, but then it
wouldn’t have a Location header as expected.

• So we compute the new URL for the location, and attach it using another chained
method.

ch05_gs_server: Exception handling

• The default handling for exceptions in index.php code
is set up at the beginning of the file: send back HTTP
500 with a JSON error message, and log the error.

• Many functions, like getCategories, have no try/catch,
just depend on the default setup.

• But postProduct wants to blame the user for sending in
a duplicate product (same productCode, causing the
database insert to fail).
– So the postProduct code does try/catch on PDOException,

checks for this case, handles it with HTTP 400 response, or
if something else, does “throw $e” to hand it to the default
handler, which then sends a HTTP 500

Server errors

• Can’t send an error page back, what do we do?
– Log the error, set the response code in the HTTP response

– Send the error message back inside a JSON message

• Choosing a good HTTP response code is important,
since it is the primary way the client makes sense of
what’s happening

• Codes used in this index.php:
– 200 success

– 500 server gave up/got exception it didn’t expect, takes the
blame

– 400 server couldn’t respond as expected but blames the client
for sending in a bad request

– We could use 201 Created for successful postProduct

Murach's Java Servlets/JSP (3rd
Ed.), C18

© 2014, Mike Murach & Associates, Inc.
Slide 21

Status code summary

Number Type Description

100-199 Informational Request was received and is

being processed.

200-299 Success Request was successful.

300-399 Redirection Further action must be taken to

fulfill the request.

400-499 Client errors Client has made a request that

contains an error.

500-599 Server errors Server has encountered an error.

Sending back a server error should only happen when the
server itself has a serious problem (i.e. bug). If the server
is executing properly, it should send back a more
descriptive code (why it couldn’t answer as expected)

Murach's Java Servlets/JSP (3rd
Ed.), C18

© 2014, Mike Murach & Associates, Inc.
Slide 22

Status codes

Number Name Description

200 OK Default status when the

response is normal.

301 Moved Permanently Requested resource has been

permanently moved.

302 Found Requested resource resides

temporarily under a new URL.

400 Bad Request Request could not be

understood by the server due to

bad syntax.

401 Unauthorized Request requires authentication.

Response must include a www-

authenticate header.

403 Forbidden Access to requested resource

has been denied.

Murach's Java Servlets/JSP (3rd
Ed.), C18

© 2014, Mike Murach & Associates, Inc.
Slide 23

Status codes (continued)

Number Name Description

404 Not Found Server could not find requested

URL.

405 Method Not Allowed Method specified in request

line is not allowed for

requested URL.

414 Request-URI Too Long Typically caused by trying to

pass too much data in a GET

request. Usually resolved by

converting the GET request to

a POST request.

500 Internal Server Error Server encountered an

unexpected condition that

prevented it from fulfilling the

request.

REST Web services:
handling outgoing JSON

• With REST Web Services, JSON data is commonly returned from GET
requests, and also from POSTs.

• It turns out to be easy: just “echo $jsonString;”
• That sends the contents of $jsonString to standard output, i.e. back

to the client.
• We often need to set HTTP headers such as Content-type:

application/json. That can be done by the PHP library function
header(…)

• With Slim, we can use the method chaining methods of its Response
object, like
$response->withHeader('Location', $location)

->withStatus(200)

->write($JSONcontent);

• Of course Slim is calling PHP’s header(…) and then echoing the
contents.

REST Web services:
handling incoming JSON

• With REST Web Services, JSON data is commonly POSTed to
us (the server side), and we are expected to read it in and
use it—how can we do this?? Or when using Slim, how
does Slim’s code do it?

• As an exercise, you could try to find out from web
resources—not so easy.

• Just as output to the client is standard output, input from
the client needs standard input. How do we access it?

• The secret: ‘php://input’ is the filespec of standard input,
i.e., the incoming data stream of the body of the request,
and file_get_contents(‘php://input’) will get it all into a
string. So that is how Slim is filling in $request for us.

Pizza2 REST web services

GET /pizza2_server/api/day returns the current day
POST /pizza2_server/api/day reinitialize DB, for testability
GET /pizza2_server/api/toppings returns info on all toppings
GET /pizza2_server/api/sizes returns info on all sizes
GET /pizza2_server/api/users returns info on all users
GET /pizza2_server/api/orders returns info on all orders
GET /pizza2_server/api/orders/{id} returns info on order of id (id)
POST /pizza2_server/api/orders adds an order
PUT /pizza2_server/api/orders/{id} updates an order

• Here “pizza2_server” is short for /cs637/username/pizza2_server
• You will implement this API using Slim

REST Resources

• Two kinds of resources:

• day, a singleton, no collection involved
– GET to …/day to read value, POST to reinitialize DB

• Toppings, sizes, users, orders: normal collection resources
– POST JSON to …/orders -> new order, say orders/12

– New URI returned in Location header

– But students don’t add toppings, etc., so only orders has POST

• GET to …/orders/12 gets JSON for order 12

• PUT to …/orders/12 updates order 12: used when a user
acknowledges baked pizzas

• GET to …/orders gets JSON for all orders: used for listing order
status for a user

Developing Web service code: notes

• PHP code in api/index.php of ch05_gs_server or
pizza2_server
o Web server code needs to avoid sending error text in response:

will mess up other end’s interpretation

o i.e., don’t “echo” debugging info: use error_log()

o error_log() in web service code outputs to same file as the client
side, so label output “client” or “server”, or use error_log only
from the server side.

o See slides 27-32 of Chapter 6 (6pp) for enabling and using
error_log()

o Actually you can use echo in server code if you test the server
just using command-line curl, but final testing needs the client,
so then you need to comment out all your echo statements.

https://www.cs.umb.edu/cs637/slides/Chapter06.pdf
https://www.cs.umb.edu/cs637/slides/Chapter06_6pp.pdf

REST web service client code

• The first job for client code is figuring out the url of the web services
• In our somewhat artificial setup, the server is a neighbor of the client on

the same server:
– …user/pizza2_server/api
– …user/pizza2_client/model (for web_services.php)

• So the code in web_services.php drops “/pizza2_client/model” off the end
of the URL and adds “/pizza2_server/api” to get $base_url for the web
services

• This code also makes sure that the $base_url starts with http://localhost,
so as to select the Apache server in XAMPP or pe07 on port 80, and not
the Netbeans server on port 8383, since the Netbeans web server can’t
interpret the crucial .htaccess file.

• In other more realistic setups, the base_url would be externally supplied.

http://localhost/

Testing web services

• Web services (even old-style SOAP services)
are “stateless”

• This means each service request contains all
needed data for the server to do its job

• REST web services are just HTTP commands

• Therefore we can just fire HTTP commands at
the server to test its services

• We can use command-line curl

Command-line curl

• We have looked at PHP’s libcurl, and the PHP
component Guzzle, both of which can fire GETs and
POSTs from our PHP code.

• Separately, we can use curl at the command line in
Windows or Linux/Mac

• More recently-installed Windows10 systems have curl.
See AddictiveTips post

• If you have an older Windows system, download curl
for Windows at http://curl.haxx.se/download.html

• Linux/Mac: should have curl already
• Also see tutorial there:

http://curl.haxx.se/docs/httpscripting.html

https://www.addictivetips.com/windows-tips/use-curl-on-windows-10/
http://curl.haxx.se/download.html
http://curl.haxx.se/docs/httpscripting.html

Command-line curl example 1

pe07$ curl

localhost/cs637/user/ch05_gs_server/api/categories

[{"categoryID":"1","categoryName":"Guitars"},

{"categoryID":"2","categoryName":"Basses"},

{"categoryID":"3","categoryName":"Drums"}]

This fires a GET to http://localhost/cs637...

pe07$ curl

localhost/cs637/user/ch05_gs_server/api/categories/bass

es/products

[{"productID":"7","categoryID":"2","productCode":"precisi

on","productName":"Fender Precision",

"listPrice":"799.99"},{"productID":"8",

"categoryID":"2","productCode":"hofner",

"productName":"Hofner Icon","listPrice":"499.99"}]

Command-line curl example 2

curl -i -d 9 -H Content-Type:text/plain

localhost/cs637/username/pizza2_server/rest/day

This fires a POST to http://localhost/cs637... With “9” in the POST body

i.e. does the Web service to set the current day to 9 in the server, and
has a Content-type header that says the POST body is text, -i option: i
for “info” specifies display of response status code, response headers

Without –i :

pe07$ curl -d 9 -H Content-Type:text/plain

http://localhost/cs637/username/pizza2_server/rest/day

pe07$

Nothing at all seen—how can we tell it worked?

http://localhost/cs637

Command-line curl example 2

With –v for verbose: see request headers, response status, headers,
often too much output:

pe07$ curl -v http://localhost/cs637/eoneil/ch05_gs_server/api/categories

* Trying 127.0.0.1...

* Connected to localhost (127.0.0.1) port 80 (#0)

> GET /cs637/eoneil/ch05_gs_server/api/categories HTTP/1.1

> Host: localhost

> User-Agent: curl/7.47.0

> Accept: */*

>

< HTTP/1.1 200 OK

< Date: Tue, 17 Nov 2020 18:52:30 GMT

< Server: Apache/2.4.18 (Ubuntu)

< Allow: GET, POST, PUT, DELETE

< Content-Length: 130

< Content-Type: application/json

<

• Connection #0 to host localhost left intact

• [{"categoryID":"1","categoryName":"Guitars"},{"categoryID":"2","categoryN
ame":"Basses"},{"categoryID":"3","categoryName":"Drums"}]pe07$

Command-line curl example 2

With –i for status info: less clutter, get the basic facts on the

response:

pe07$ curl -i localhost/cs637/eoneil/ch05_gs_server/api/categories

HTTP/1.1 200 OK

Date: Tue, 17 Nov 2020 18:55:23 GMT

Server: Apache/2.4.18 (Ubuntu)

Allow: GET, POST, PUT, DELETE

Content-Length: 130

Content-Type: application/json

[{"categoryID":"1","categoryName":"Guitars"},{"categoryID":"2","cat

egoryName":"Basses"},{"categoryID":"3","categoryName":"Drums"}]p

e07$

Command-line curl example 3

curl -i -H "Content-Type: application/json" -d @guitar.json

localhost/cs637/eoneil/ch05_gs_server/api/categories/guit

ars/products

Explanation of arguments:

-i return response status, headers

-d @guitar.json use method POST, with POST data from file

guitar.json. Defaults to Content-Type for encoded parameters, like

form data x=10&y=20

-H Content-Type: application/json override the default

Content-Type to this type, JSON

So this command does a POST to the URL with contents of guitar.json
as POST data, and reports semi-verbosely on the action

Command-line curl example 3

pe07$ curl -i -H "Content-Type: application/json" -d @guitar.json

localhost/cs637/eoneil/ch05_gs_server/api/categories/guitars/p

roducts

HTTP/1.1 200 OK

Date: Tue, 17 Nov 2020 19:01:05 GMT

Server: Apache/2.4.18 (Ubuntu)

Location:

http://localhost/cs637/eoneil/ch05_gs_server/api/categories/gu

itars/products/13

Allow: GET, POST, PUT, DELETE

Content-Length: 116

Content-Type: application/json

{"categoryID":"1","productCode":"les_paul2","productName":"Gibson

Les Paul2","listPrice":"1199.00","productID":"13"}pe07$

New url in
Location
header

Shell scripts

We can automate command line work with shell scripts (even on
Windows)

pe07$ more test1.sh

curl localhost/cs637/$1/ch05_gs_server/api/day

pe07$ chmod +x test1.sh

pe07$ test1.sh eoneil

Fills in eoneil for $1 in script:

Pe07$ curl -i -d 9 -H Content-Type:text/plain

localhost/cs637/eoneil/ch05_gs_server/api/day

For Windows: test1.cmd: use %1% instead of $1.

See shell and .cmd files in proj2_tests directory.

proj2_tests

• This directory is now available with 3 shell scripts for testing pizza2_server
– Each with Windows and Linux/Mac versions

– Will be used in grading run, but also useful for development

• Example: run servertest1.sh on working pizza2_server project:

pe07$ servertest1.sh eoneil

--------get server day: should show 1 if DB in init. state

1

--------get toppings: returns toppings in JSON

[{"id":"1","topping":"Pepperoni"},{"id":"2","topping":"Onions"}]

--------get sizes

[{"id":"1","size":"Small","diameter":"12"},{"id":"2","size":"Larg
e","diameter":"16"}]

--------get users

[{"id":"1","username":"joe","room":"6"},{"id":"2","username":"sue
","room":"3"}]

servertest1.sh

echo ----------get server day: should show 1 if DB in init. state

curl http://localhost/cs637/$1/pizza2_server/api/day

echo

echo ----------get toppings: returns toppings in JSON

curl http://localhost/cs637/$1/pizza2_server/api/toppings

echo

echo ----------get sizes

curl http://localhost/cs637/$1/pizza2_server/api/sizes

echo

echo ----------get users

curl http://localhost/cs637/$1/pizza2_server/api/users

servertest1 eoneil fills in eoneil for each $1 in the above

http://localhost/cs637/$1/pizza2_server/api/users

servertest1.cmd for Windows

rem -------------get server day: should show 1 if DB in init. state

curl http://localhost/cs637/%1/pizza2_server/api/day

rem

rem -------------get toppings: returns toppings in JSON

curl http://localhost/cs637/%1/pizza2_server/api/toppings

rem

rem -------------get sizes

curl http://localhost/cs637/%1/pizza2_server/api/sizes

rem

rem -------------get users

curl http://localhost/cs637/%1/pizza2_server/api/users

Rem

Same commands, just %1 for argument, rem for simple echo

