
Web Services, part 3:
Advanced Topics

i.e. topics not directly involved in
project 2

REST Web Services in general

From Dr Dobbs:
Addressing Resources (making up URIs for resources)
• REST requires each resource to have at least one URI.
• The job of a URI is to identify a resource or a collection

of resources.
• The actual operation is determined by an HTTP verb.

The URI itself should not say anything about the
operation or action.

• This enables us to call the same URI with different
HTTP verbs to perform different operations.

• Our example: GET /…/orders vs. POST /…/orders

http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069

URIs vs. URLs
• Dr. Dobbs talks of URIs for REST web services

• But they look like the URLs

• What's the difference?

• From https://www.ietf.org/rfc/rfc3986.txt , the official authority on URIs and URLs:

– A Uniform Resource Identifier (URI) is a compact sequence of characters that
identifies an abstract or physical resource.

– A URI can be further classified as a locator, a name, or both. The term
"Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition
to identifying a resource, provide a means of locating the resource by
describing its primary access mechanism (e.g., its network "location").

• So a URI might simply be an id with no "substance", nothing "at that
address" on the Internet, but a URL should be usable with HTTP to access
something

• We can argue that our REST web services are using URLs, not just URIs.

https://www.ietf.org/rfc/rfc3986.txt

Dr. Dobbs Example

• Suppose we have a database of persons and we wish to expose it to
the outer world through a service. A resource person can be
addressed like this:

• http://MyService/Persons/1
• This URL has following

format: Protocol://ServiceName/ResourceType/ResourceID
• Here are some important recommendations for well-structured

URIs:
– Use plural nouns for naming your collection resources.
– Avoid using spaces in URIs as they create confusion. Use

an _ (underscore) or – (hyphen) instead.
– A URI is case insensitive. I use camel case in my URIs for better clarity.

You can use all lower-case URIs.
• This is wrong. The hostname part is case insensitive, but the path part is case

sensitive on UNIX/Linux web servers because the filesystem is: try
http://localhost:8000/cs637/eoneil/ch05_gs_server/api/CATEGORIES, see it
fail, but localhost:8000/cs637/eoneil/ch05_gs_server/api/categories succeed

http://localhost:8000/cs637/eoneil/ch05_gs_server/api/CATEGORIES
http://localhost:8000/cs637/eoneil/ch05_gs_server/api/categories

Dr. Dobbs Example

• http://MyService/Persons/1
• Avoid verbs for your resource names until your

resource is actually an operation or a process.
Verbs are more suitable for the names of
operations.

• For example, a RESTful service should not have
the URIs

http://MyService/FetchPerson/1 or
http://MyService/DeletePerson/1.
• Instead, use GET to http://MyService/Person/1

and DELETE to http://MyService/FetchPerson/1

http://myservice/Persons/1

Query Parameters in REST URIs

• Here is a URI constructed with the help of a query
parameter:
http://MyService/Persons?id=1

• The query parameter approach works just fine and
REST does not stop you from using query parameters.
However, this approach has a few disadvantages.
– Increased complexity and reduced readability, which will increase if

you have more parameters
– Search-engine crawlers and indexers like Google can by confused

by URIs with query parameters. If you are developing for the Web,
this could be a great disadvantage as a portion of your Web service
will be hidden from the search engines. See
https://support.google.com/webmasters/answer/6080548?hl=en

https://support.google.com/webmasters/answer/6080548?hl=en

Query Parameters in REST URIs

• The basic purpose of query parameters is to provide
parameters to an operation that needs the additional
info. For example, if you want the format of the
presentation to be decided by the client. You can
achieve that through a parameter like this:

http://MyService/Persons/1?format=xml&encoding=UTF8

• Note: There is another way to specify format and
encoding using HTTP headers, covered later.

• Recall Flickr example from Purewal Chap 5:
https://api.flickr.com/services/feeds/photos_public.gne?tags=dogs&form
at=json

http://myservice/Persons/1?format=xml&encoding=UTF8
https://api.flickr.com/services/feeds/photos_public.gne?tags=dogs&format=json

URL parameter ideas, from
https://www.hallaminternet.com/avoiding-the-seo-pitfalls-of-url-parameters/

https://www.hallaminternet.com/avoiding-the-seo-pitfalls-of-url-parameters/

Example service: fixer.io

• Reports currency conversion rates for 170
world currencies, including Bitcoin, Gold and
Silver rates.

• Has free service upon registration (not as
immediately updated)

• Example from their docs:
https://data.fixer.io/api/latest?access_key=

mykey&base=USD&symbols=GBP,JPY,EUR

https://fixer.io/

Fixer request and response: example
from their docs

https://data.fixer.io/api/latest?access_key=mykey&ba
se=USD&symbols=GBP,JPY,EUR

{

"success": true,

"timestamp": 1519296206,

"base": "USD",

"date": "2020-12-04",

"rates": {

"GBP": 0.72007, one dollar buys .72 pounds

"JPY": 107.346001,one dollar buys 107 yen

"EUR": 0.813399, one dollar buys .81 euro

}

Fixer free example

http://data.fixer.io/api/latest?access_key=9add2f3ab6d0ec
54c00ca0272e57f7e4&symbols=GBP,JPY,EUR,USD

{"success":true,"timestamp":1607111346,
"base":"EUR","date":"2020-12-04",
"rates":{"GBP":0.903425,"JPY":126.388524,"EUR":1
"USD":1.21357}}
So 1 dollar buys 1/1.21357 euros, etc.

Similarly, YouTube Data API requires access key,
query in parameters

"USD":1.21357}}

http://data.fixer.io/api/latest?access_key=9add2f3ab6d0ec54c00ca0272e57f7e4&symbols=GBP,JPY,EUR,USD

Links Between Resources

• A resource representation can contain links to other resources like an
HTML page contains links to other pages.

• The representations returned by the service should drive the process flow
as in case of a website.

• When you visit any website, you are presented with an index page. You
click one of the links and move to another page and so on. Here, the
representation is in the HTML documents and the user is driven through
the website by these HTML documents themselves. The user does not
need a map before coming to a website. A service can be (and should be)
designed in the same manner.

• Let's consider the case in which a client requests one resource that
contains multiple other resources. Instead of dumping all these resources,
you can list the resources and provide links to them. Links help keep the
representations small in size.

• Added by eoneil: However, following lots of links takes many round-trip
times. We saw how much info was dumped by one video search…

JSON for Club of Persons

{
"Name": "Authors Club",
"Persons": [

{
"Name": "M. Vaqqas",
"URI": "http:\/\/MyService\/Persons\/1"

},
{

"Name": "S .Allamaraju",
"URI": "http:\/\/MyService\/Persons\/12"

}
]

}

We need to escape the / in the URL to
hold it in a JSON string

JSON for Club

PHP: First build PHP array, then json_encode it:
$person1 = ['Name'=> 'M. Vaqqas',

'URI'=>'http://MyService/Persons/1'];

$person2 = ['Name'=> 'S .Allamaraju',

'URI'=>'http://MyService/Persons/12'];

$club = array('Name'=>'Authors Club',

'Persons'=>[$person1, $person2]);

$json = json_encode($club,JSON_PRETTY_PRINT);

JS: build JS, call stringify:
let person1 = {“Name”: 'M. Vaqqas', “URI”: http://MyService/Persons/1};

let person2 = …

let club = {“Name”: 'Authors Club’, “Persons”:[person1, person2]};

let clubJSON = JSON.stringify();

http://myservice/Persons/1

URI Templates

Dr. Dobbs example:

http://MyService/Persons/{PersonID}

For pizza2_server:

pizza2_server/api/orders/{orderID}

We saw this syntax in the routes setup under Slim:

$app->get('/orders/{id}', 'getOrder');

$app->put('/orders/{id}', 'updateOrder');

Content negotiation

From Wikipedia:
Content negotiation is a mechanism defined in

the HTTP specification that makes it possible to
serve different versions of a document (a
resource representation) at the same URI, so
that user agents (browsers, etc.) can specify
which version fit their capabilities the best.

One classical use of this mechanism is to serve an
image in GIF or PNG format, so that a browser
that cannot display PNG images (e.g. MS Internet
Explorer 4) will be served the GIF version.

http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/User_agent
http://en.wikipedia.org/wiki/GIF
http://en.wikipedia.org/wiki/Portable_Network_Graphics

Content Negotiation

• The user agent provides an Accept HTTP header that lists
acceptable media types and associated quality factors.

• The server is then able to supply the version of the resource that
best fits the user agent's needs.

• So, a resource may be available in several different representations.
For example, it might be available in different languages or different
media types, or a combination.

• For example, a browser could indicate that it would like to see
information in German, if possible, else English will do. Browsers
indicate their preferences by headers in the request. To request
only German representations, the browser would send:

Accept-Language: de
• Note that this preference will only be applied when there is a

choice of representations and they vary by language.

http://en.wikipedia.org/wiki/List_of_HTTP_header_fields

Multiple preferences

As an example of a more complex request, this browser has been configured
to accept German and English, but prefer German, and to accept various
media types, preferring HTML over plain text or other text types, and
preferring GIF or JPEG over other media types, but also allowing any other
media type as a last resort:

Accept-Language: de; q=1.0, en; q=0.5

Accept: text/html; q=1.0, text/*; q=0.8, image/gif;

q=0.6, image/jpeg; q=0.6, image/*; q=0.5, */*;

q=0.1

• RFC 7231 does not specify how to resolve trade-offs (such as, in the above
example, choosing between an HTML page in English and a GIF image in
German).

http://tools.ietf.org/html/rfc7231

XML vs. JSON

Client app 1 sends

Accept: application/json

Server sees that, sends response in JSON

Client app 2 sends

Accept: application/xml

Server sends XML

Languages

Browser 1 sends

Accept-Language: da (Danish)

Server sends HTML in Danish if possible

Accept-Language: da, en-gb;q=0.8, en;q=0.7

This means Danish is best for user, and British
English (en-gb) is of somewhat lower quality,
but better than non-British English. Similarly
the app can specify which image formats it
wants.

Hypermedia Protocols

• If the links in the webservice results are well enough organized, a
client can discover more pages and snake their way through related
services.

• This is the basic idea of hypermedia.
• Example from REST in Practice, by Webber et al:

– Customer POSTs order, response Order rep (in JSON or XML) has link to
cancel URI and make-payment URI

– Customer POST to make-payment returns a Response that has link
back to order and link to get-receipt

– Customer GET to get-receipt returns a Response with link to order
– Customer GET for Order (get-order) rep just has status (user needs to

wait), no links
– When order ready Order rep back from get-order has status=ready

and link to receipt
– When order done, Order rep has no links.

Some Available Web Services: and SDKs for PHP and JS

Look at Google APIs: all need https:
See translate, gmail, youtube, maps, etc., PHP SDK (Component)
GAPI The Google APIs Client Library for Browser JS: Google Docs, etc.
Google Maps JS API

Amazon AWS (cloud and storage services) SDKs for 9 languages!
PHP SDK (Component) JS in Browser SDK

Amazon S3: First important Web API, from ‘06 (Wikipedia), for Storage: see
deprecated SOAP API, current REST API, has http:// endpoint, but requires
https: and authorization for many actions. Basically provides files in the
cloud.

https://developers.google.com/apis-explorer/
https://aws.amazon.com/sdk-for-php/
https://medium.com/google-cloud/gapi-the-google-apis-client-library-for-browser-javascript-5896b12dbbd5
https://developers.google.com/maps/documentation/javascript/tutorial
https://docs.aws.amazon.com/
https://aws.amazon.com/tools/
https://aws.amazon.com/sdk-for-php/
https://aws.amazon.com/sdk-for-browser/
http://docs.aws.amazon.com/AmazonS3/latest/API/IntroductionAPI.html
https://en.wikipedia.org/wiki/Amazon_S3

Some Available Web Services: and SDKs for PHP and JS,
continued

Facebook: graph API overview, shows GET, POST, JSON snippet
PHP SDK (Component) JS SDK

Twitter: REST API for tweets, PHP component for REST JS API

Video on REST APIs with Facebook, Google Maps, Instagram
examples, using APIs as of 2014, but has useful ideas. The API
tester app in use (at apigee.com) is no longer available. The video
points to programmableweb.com for an API directory. That site
has guide to tools for testing APIs

https://developers.facebook.com/docs/graph-api/overview
https://developers.facebook.com/docs/reference/php/
https://developers.facebook.com/docs/javascript/
https://dev.twitter.com/overview/api/tweets
https://twitteroauth.com/
https://developer.twitter.com/en/docs/twitter-for-websites/javascript-api/overview
https://www.youtube.com/watch?v=7YcW25PHnAA
http://programmableweb.com/
https://www.programmableweb.com/news/know-your-tool-options-api-testing-and-monitoring/review/2017/12/12

