
Slide 1

Pizza Project (doc)

A college, to attract more students, has

decided to offer free pizza in the

dormitory.

You have been selected to implement the

needed automated ordering system, a

webapp of course…

PizzaProject.html

Pizza Dynamics

Slide 2

The pizzas will be available in 2 sizes, Small and

Large.

Toppings beyond the basic tomato sauce and cheese

can be selected from an expandable set of options:

• Pepperoni

• Onions

• Mushrooms

• …

A pizza just ordered has status PREPARING

A pizza later becomes BAKED

A pizza with acknowledged delivery is FINISHED

Web app user actions

Slide 3

• A student can order any subset of these toppings,

and choose the size.

• The student id (user id) and current day is

remembered as well.

• The students should be able to ask if their pizza(s)

are done, and their size and toppings

• When a student acknowledges receipt of the

pizza(s), those pizza orders are marked

completed.

How does a pizza become BAKED?

• We could make the server keep track of time… but
that’s unusual.

• Every active website needs an admin

• The pizza shop admin tells the system when the next
pizza is done (they come out of the oven in order).

• The admin also says when a day is done. When a day is
done, all the orders are complete for that day.

• The admin also can add a topping, list orders,
reinitialize, etc.

Slide 4

Designing the UI

• When designing modern user interfaces, think objects,
then actions.

• Looking at the user and admin actions, we see they can
be grouped as involving objects that are toppings,
sizes, orders, and days. Also the users themselves.

• For simplicity, the sizes are just Small and Large, not
changeable by the UI

• Thus we propose the top-level topics:
– Toppings

– Orders

– Days

– Users

Slide 5

Designing the UI

• When we manage a collection like toppings, we don’t make
the user enter/choose commands like “list”, “add”, …

• We just show the current collection to the user, with a
button/link to add something to the collection, and a button
on each item for its delete (and another for its update, if
needed)

• This UI pattern is first shown in the book in Chap. 4, in the
Product Manager.
– Here we are managing a collection of Products (guitars, basses,

etc.).

– A user (an admin) can add a Product, or delete one.

– This approach only involves two pages, one for listing the
collection and one for adding a new element to it.

Slide 6

http://topcat.cs.umb.edu/book_apps/ch04_product_manager/
http://localhost/book_apps/ch04_product_manager/

Designing the Database

• We want to be able to add a new topping to the system

• So we need a table for orders, another for toppings

• A single order can have many toppings

• A single topping can be used in many orders

• Thus we could model this as a N-N relationship between
orders and toppings

• But then it’s hard to delete a topping since it is still in use
with older orders

• In reality, there’s a difference between the idea of a certain
topping being available (on the menu), and its use in a
particular pizza

• So let’s go back to basics and look at one pizza…

Slide 7

A Pizza Order

• A pizza order has a set of toppings and a single size
• For example, order 10 has size “Small” and toppings

“pepperoni” and “onions”
• So the pizza_order table has “size” as a column, so the

row for order 10 can have “size=small”.
• We need to attach toppings “pepperoni” and “onions”

onto this order.
– This is like employees and hobbies, a standard example of

a multi-valued attribute. Each employee may have
multiple hobbies.

– The relational solution is to have a employee_hobby table
with (empid, hobby) rows and FK on empid. The PK is
(empid, hobby).

• So here we need an order_topping table with (orderid,
topping) rows.

Slide 8

id topping

1 pepperoni

id size diameter

1 Small 12

2 Large 16

menu_toppings: id is PK, topping is unique

menu_sizes: id is PK, size is unique

Pizza Database after a topping and size are added

(No orders yet)

Id user_id size day status

pizza_orders table: id is PK, empty to start

current_day

1

pizza_sys_tab (one row table)

order_id topping

order_topping: (orderid, topping) is PK: empty

status_value

Preparing

Baked

Finished

status_values

id username room

1 joe 6

2 sue 3

shop_users: id is PK, users “joe” and “sue”

Slide 10

Pizza Database after an order by sue is recorded

Id user_id size day status

1 2 Small 1 Preparing

pizza_orders table: now has one order

order_id topping

1 pepperoni

order_topping: (orderid, topping) is PK id username room

1 joe 6

2 sue 3

shop_users: id is PK, users “joe” and “sue”

current_day

1

pizza_sys_tab (one row table)

status_value

Preparing

Baked

Finished

status_values

id topping

1 pepperoni

id size diameter

1 Small 12

2 Large 16

menu_toppings: id is PK, topping is unique

menu_sizes: id is PK, size is unique

Slide 11

Pizza status values;
Preparing Baked Finished

Suppose have one pizza size « small »,
one topping « pepperoni », then two
orders:

First pizza order by sue:

1. Ordered (status = Preparing)

2. Admin said pizza ready (status=Baked)

3. Student received it (status=Finished)

Second pizza order by joe:

1. Ordered (status=Preparing)

2. Day ended, status=Finished

Pizza Shop actions and database contents

Id user_id size day status

1 2 small 1 Finished

2 1 small 1 Finished

pizza_orders table: id is PK

Order_id topping

1 pepperoni

2 pepperoni

order_topping: (orderid, topping) is PK

Slide 12

order_id topping

1 pepperoni

2 pepperoni

order_topping

id user_id size day status

1 2 small 1 Finished

2 1 small 1 Finished

pizza_orders

current_day

2

pizza_sys_tab (one row table)

Final state of database

status_value

Preparing

Baked

Finished

status_values
id topping

1 pepperoni

id size diameter

1 Small 12

2 Large 16

menu_toppings: id is PK, topping is unique

menu_sizes: id is PK, size is unique

Foreign Keys

• We need a FK from order_id in order_topping to orders to
make sure that order exists.

• Note we are not planning to delete orders in this app.
• It’s tempting to put a FK from topping in order_topping to

topping in menu_toppings
• But then a topping can’t be deleted when it’s in use in old

orders
• Similarly the size in pizza_orders can’t have a FK to size in

menu_sizes.
• We could consider “on delete set null” for the FK on size, an

advanced option. But we want to keep things simple.
• Thus we’ll stick with one FK on order_id, and one to make

sure the status is valid.

Slide 13

