Pizza Project (doc)

A college, to attract more students, has
decided to offer free pizza in the
dormitory.

You have been selected to implement the
needed automated ordering system, a
webapp of course...

Web app user actions

« A student can order any subset of these toppings,

and choose the size.

« The student id (user id) and current day is .
remembered as well.

« The students should be able to ask if their pizza(s)

are done, and their size and toppings

* When a student acknowledges receipt of the .
pizza(s), those pizza orders are marked

completed.

Designing the Ul

When designing modern user interfaces, think objects, .
then actions.

Looking at the user and admin actions, we see they can
be grouped as involving objects that are toppings,
sizes, orders, and days. Also the users themselves.

For simplicity, the sizes are just Small and Large, not .

changeable by the Ul

Thus we propose the top-level topics:
— Toppings

— Orders

— Days

— Users

9/30/2020

Pizza Dynamics

The pizzas will be available in 2 sizes, Small and
Large.

Toppings beyond the basic tomato sauce and cheese
can be selected from an expandable set of options:

« Pepperoni

« Onions

* Mushrooms

A pizza just ordered has status PREPARING
A pizza later becomes BAKED
A pizza with acknowledged delivery is FINISHED

How does a pizza become BAKED?

We could make the server keep track of time... but
that’s unusual.

Every active website needs an admin

The pizza shop admin tells the system when the next
pizza is done (they come out of the oven in order).

The admin also says when a day is done. When a day is
done, all the orders are complete for that day.

The admin also can add a topping, list orders,
reinitialize, etc.

Designing the Ul

When we manage a collection like toppings, we don’t make
the user enter/choose commands like “list”, “add”, ...
We just show the current collection to the user, with a
button/link to add something to the collection, and a button
on each item for its delete (and another for its update, if
needed)
This Ul pattern is first shown in the book in Chap. 4, in the
Product Manager.

— Here we are managing a collection of Products (guitars, basses,

etc.).
— Auser (an admin) can add a Product, or delete one.

— This approach only involves two pages, one for listing the
collection and one for adding a new element to it.

PizzaProject.html
http://topcat.cs.umb.edu/book_apps/ch04_product_manager/
http://localhost/book_apps/ch04_product_manager/

Designing the Database

We want to be able to add a new topping to the system
So we need a table for orders, another for toppings

A single order can have many toppings

A single topping can be used in many orders

Thus we could model this as a N-N relationship between
orders and toppings

But then it’s hard to delete a topping since it is still in use
with older orders

In reality, there’s a difference between the idea of a certain
topping being available (on the menu), and its use in a
particular pizza

So let’s go back to basics and look at one pizza...

Pizza Database after a topping and size are added
(No orders yet)

pizza_orders table: id is PK, empty to start

\m ‘ user_id ‘size ‘ day ‘status ‘

shop_users: id is PK, users “joe” and “sue”

id | username room order_topping: (orderid, topping) is PK: empty
1 |joe 6 ‘order id ‘togging
2 sue 3

status_values

status value

menu_toppings:id is PK, topping is unique
Preparing

Baked
Finished

menu_sizes: id is PK, size is unique

pizza_sys_tab (one row table)

id |size diameter current_day
1 [small |12 L
2 Large 16

Pizza Shop actions and database contents

Pizza status values;
Preparing - Baked = Finished

Suppose have one pizza size « small »,
one topping « pepperoni », then two

orders:
First pizza order by sue: Second pizza order by joe:
1. Ordered (status = Preparing) 1. Ordered (status=Preparing)
2. Admin said pizza ready (status=Baked) 2. Day ended, status=Finished
3. Student received it (status=Finished)

pizza_orders table: id is PK order_topping: (orderid, topping) is PK

Id |user_id size day status Order_id | topping
1]2 small 1 Finished 1 pepperoni
2 |1 small 1 Finished 2 pepperoni

9/30/2020

A Pizza Order

* A pizza order has a set of toppings and a single size

* For example, order 10 has size “Small” and toppings
“pepperoni” and “onions”

* So the pizza_order table has “size” as a column, so the
row for order 10 can have “size=small”.

* We need to attach toppings “pepperoni” and “onions”
onto this order.

— This is like employees and hobbies, a standard example of
a multi-valued attribute. Each employee may have
multiple hobbies.

— The relational solution is to have a employee_hobby table
with (empid, hobby) rows and FK on empid. The PK is
(empid, hobby).

* So here we need an order_topping table with (orderid,
topping) rows.

Pizza Database after an order by sue is recorded

pizza_orders table: now has one order

[1d Tuser_id [size [day [status |
‘1 ‘2 ‘Sma\l ‘ 1 ‘ Preparing ‘
shop_users: id is PK, users “joe” and “sue”

username room order_topping: (orderid, topping) is PK

i~ - &
S
3

6 oppin
sue 3
status_values
menu_toppings: id is PK, topping is unique Status value

menu_sizes: id is PK, size is unique

topping Preparing

Finished

pizza_sys_tab (one row table)

id |size diameter
2 Large 16

Final state of database

pizza_orders

id |user_id size day status
112 small 1 Finished
2 |1 small 1 Finished
order_topping
der_id toppi
order id oppiny - pizza_sys_tab (one row table)
1 pepperoni
2 pepperoni

menu_toppings: id is PK, topping is unique

i Ttopping |

status_values

sotus e
menu_sizes: id is PK, size is unique Preparing
i : - Baked
id |size diameter Finished
1 Small 12
2 Large 16

Foreign Keys

We need a FK from order_id in order_topping to orders to
make sure that order exists.

Note we are not planning to delete orders in this app.

It’s tempting to put a FK from topping in order_topping to
topping in menu_toppings

But then a topping can’t be deleted when it’s in use in old
orders

Similarly the size in pizza_orders can’t have a FK to size in
menu_sizes.

We could consider “on delete set null” for the FK on size, an
advanced option. But we want to keep things simple.
Thus we'll stick with one FK on order_id, and one to make
sure the status is valid.

9/30/2020

