
SIGMOD08 Tutorial: Hibernate and EDM
www.cs.umb.edu/~eonei l/orm

11/19/2008

1

Object/Relational Mapping 2008:
Hibernate and the Entity Data
Model (EDM)

Elizabeth (Betty) O’Neil
Dept. of Computer Science

University of Massachusetts Boston

Love of Objects
� Programmers love objects
� Objects are normally ephemeral
� Programming languages provide object persistence,

but it is fragile
� Databases provide robust data persistence.
� So… need way to persist object data in the database
� Or think bigger: use data model across object-DB

boundaries.
� But a central authority on an object model worries

some people: not clearly agile.

2

Object-
intensive
app

Database

Other apps

ORM

Object-Relational Mapping (ORM)

• A software system that shuttles data back and forth
between database rows and objects
• Appears as a normal database user to the database
• Can share the database and tables with other apps

3

Object-Relational Mapping
� Has a history, but widely adopted only since open-

source Hibernate project started, 2001-2002.
� The Hibernate project [7] was founded and led by

Gavin King, a Java/J2EE software developer, now part
of JBoss. King wrote an excellent book [3].

� Microsoft has adopted a similar approach with EDM,
Entity Data Model and its Entity Framework [1, 10]. V1
was released with Visual Studio SP1 in August.

� Both Hibernate and EDM support (or will support)
multiple databases: Oracle, DB2, SQL Server, …

4

Java Persistence Architecture (JPA)
� JPA is part of current JEE (previously J2EE), Sun’s Java

Enterprise Edition
� JPA is a standardized version of the Hibernate

architecture
� EJB 3 (current Entity Java Beans) uses JPA for EJB

persistence, i.e., persistence of “managed” objects
� JPA and EJB 3 are now available in major application

servers: Oracle TopLink 11g, OpenJPA for
WebSphere and WebLogic, Hibernate JPA for JBoss

� JPA can be used outside EJB 3 for persistence of
ordinary objects, as Hibernate is used in this talk

5

Current ORM Impetus: the web app

6

A web app, with its multi-threaded object layer, particularly
needs help with the correct handling of persistent data

Multi-threaded
Object layer

Database

Web layer

Other apps

ORM

Concurrent
web requests
from users

App
server(s)

Database
server

SIGMOD08 Tutorial: Hibernate and EDM
www.cs.umb.edu/~eonei l/orm

11/19/2008

2

Our Universe of Discourse
� Object-oriented web apps with database backed data

� Let’s consider sites with

◦ Possibly many application servers, where the objects live

◦ A single database server with plenty of CPUs and disks

� Given today’s fast machines and databases, this
configuration scales up to many 100s of
transactions/second (over 1 M Tx/hour)

� We will concentrate on common characteristics of

Hibernate and EDM

7

Outline of Presentation
-------Ask questions any time

� Schema mapping

� Entities and their identity

� Relationships

� Inheritance

� The Pizza Shop Example

� Sample code using entity objects

� Development tools, artifacts

� The ORM runtime system

� Transactions, performance

� Summary

8

Data Modeling
� Three modeling methodologies:

◦ We all know the venerable Chen E-R models for
database schemas; the extended E-R models (EER)
incorporate inheritance

◦ The object modeling approach uses UML class
diagrams, somewhat similar to EER

◦ The tables of the database define the “physical”
schema, itself a model of underlying resources

� The relationship between these models involves
schema mapping, covered in last SIGMOD’s
keynote talk by Phil Bernstein[9]

9

Even simple cases need help
� In the simplest case, a program object of class A has fields x,

y, z and a table B has columns x, y, z

◦ Each instance of A has a row in B and vice versa, via ORM

◦ Are we done?

◦ If x is a unique id, and x, y, and z are simple types, yes.

◦ --Or some unique id in (x, y, z), possibly composite

� If no unique id in (x, y, z), the object still has its innate
identity, but corresponding rows involve duplicate rows,
against relational model rules

� So in practice, we add a unique id in this case:

� Class A1 has id, x, y, z and table B1 has id, x, y, z

10

Persistent Objects & Identity
� A “persistent object” is an ordinary program object

tied via ORM to database data for its long-term state
� The program objects come and go as needed
� Don’t confuse this with language-provided

persistence (Java/C#), a less robust mechanism
� Persistent objects have field-materialized identity
� It makes sense—Innate object identity depends on

memory addresses, a short-lived phenomenon
� So long-lived objects (could be years…) have to be

identified this way, it’s not the database’s fault

11

Persistent Objects need tracking
� We want only one copy of each unique object in use by

an app, a basic idea of OO programming

� Each persistent object has a unique id

� We can no longer can depend on object location in
memory to ensure non-duplication

� So we have a harder problem than before—need an
active agent tracking objects

� This agent is part of ORM’s runtime system

� The ORM uses hashing to keep track of ids, detect
duplicates

12

SIGMOD08 Tutorial: Hibernate and EDM
www.cs.umb.edu/~eonei l/orm

11/19/2008

3

ORM Entities
� Like E/R entities, ORM entities model collections of real-

world objects of interest to the app

� Entities have properties/attributes of database datatypes

� Entities participate in relationships—see soon (but
relationships are not “first class” objects, have no attributes)

� Entities have unique ids consisting of one or more properties

� Entity instances (AKA entities) are persistent objects of
persistent classes

� Entity instances correspond to database rows of matching

unique id

13

Value Objects
� In fact, persistent objects can be entities or value objects

� Value objects can represent E/R composite attributes and multi-
valued attributes

� Example: one address consisting of several address attributes for a
customer.

� Programmers want an object for the whole address, hanging off the
customer object

� Value objects provide details about some entity, have lifetime tied to
their entity, don’t need own unique id

� Value objects are called Hibernate “components”, EDM “complex
types”

� We’ll only discuss entities for persistent objects

� For this presentation, persistent object = entity object

14

Creating Unique IDs
� A new entity object needs a new id, and the database is holding all

the old rows, so it is the proper agent to assign it

� Note this can’t be done with standard SQL insert, which needs
predetermined values for all columns

� Every production database has a SQL extension to do this
◦ Oracle’s sequences

◦ SQL Server’s auto-increment datatype

◦ …

� The ORM system coordinates with the database to assign the id, in
effect standardizing an extension of SQL

� Keys obtained this way have no meaning, are called “surrogate
keys”

� Natural keys can be used instead if they are available.

15

Entity Model

� Uses UML-like diagrams to express object models that can be
handled by this ORM methodology

� Currently handles only binary relationships between entities,
expects foreign keys for them in database schema

� Has a SQL-like query language that can deliver entity objects and
entity object graphs

� Supports updates and transactions

16

PizzaOrder Topping

PizzaSize

0..*0..*

0..*
1

Classic Relationships

PizzaOrder Topping

PizzaSize

N-N

N-1

PizzaOrder Topping

PizzaSize

0..*0..*

0..*

E-R diagram

UML class diagram or entity model: no big
diamonds, type of relationship is inferred from
cardinality markings

A PizzaOrder has a PizzaSize and a set of Toppings

17

1

pizza_order

topping

pizza_size

id sizeid (FK) room status

order_topping

id name

orderid (FK) toppingid (FK)

id name

PizzaOrder Topping

PizzaSize

0..*0..*

0..*

Classic Relationships
Schema mapping, entities to tables and vice versa

Needed database schema:
has one table for each
entity, plus a link table for
N-N relationship

1

18

SIGMOD08 Tutorial: Hibernate and EDM
www.cs.umb.edu/~eonei l/orm

11/19/2008

4

Inheritance
� Example: generalize Topping to PizzaOption, to allow other

options in the future:
◦ Topping ISA PizzaOption

◦ Shape ISA PizzaOption, …

� Then a PizzaOrder can have a collection of PizzaOptions
◦ We can process the PizzaOptions generically, but when necessary, be

sensitive to their subtype: Topping or Shape

◦ It is important to have “polymorphic associations”, such as PizzaOrder
to PizzaOption, that deliver the right subtype object when followed.

� Inheritance is supported directly in Java, C#, etc., ISA
“relationship”

� Inheritance is not native to RDBs, but part of EER, extended entity-
relationship modeling, long-known schema-mapping problem

19

Inheritance Hierarchies

� Both Hibernate and EDM can handle inheritance hierarchies and
polymorphic associations to them

� Both Hibernate and EDM provide single-table and multiple-tables
per hierarchy solutions
◦ Single-table: columns for all subtypes, null values if not appropriate to

row’s subtype

◦ Multiple-table: table for common (superclass) properties, table for each
subclass for its specific properties, foreign key to top table

◦ Also hybrid: common table plus separate tables for some subclasses

20

Option

Topping Shape∙ color

∙ id

∙ name

∙ aspect

Inheritance Mapping (single table)

21

pizza_order

option

pizza_size

id sizeid (FK) room status

order_option

id kind name color aspect

orderid (FK) optionid (FK)

id name

PizzaOrder
Option

PizzaSize

0..*0..*

0..*

Topping Shape

∙ color

∙ id

∙ name

∙ aspect

Discriminator column to specify subtype
(not seen in object properties)

1

Inheritance using a single table
� The discriminator column (here “kind”) is

handled by the O/R layer and does not show
in the object properties
� The hierarchy can have multiple levels
� Single-table approach is usually the best

performing way
� But we have to give up non-null DB

constraints for subtype-specific properties
� Alternatively, use multiple tables…

22

Inheritance Mapping (3 tables)

pizza_order

option

pizza_size

id sizeid (FK) room status

order_option

id name

orderid (FK) optionid (FK)

id name

topping shape
id (FK) color id(FK) aspect

23

PizzaOrder

PizzaSize

0..*

0..*

Option
0..*

Topping∙ color

∙ id
∙ name

∙ aspect

Shape
1

Inheritance Mapping (hybrid)

24

pizza_order

option

pizza_size

id sizeid (FK) room status

order_option
orderid (FK) optionid (FK)

id name

PizzaOrder

PizzaSize

0..*

0..*

topping
id (FK) color

Option
0..*

Topping∙ color

∙ id
∙ name

∙ aspect

Shape

id kind name aspect

1

SIGMOD08 Tutorial: Hibernate and EDM
www.cs.umb.edu/~eonei l/orm

11/19/2008

5

A Mapping dissected

Option

Topping∙ color

∙ id

∙ name

∙ aspect

Shape

Topping instance

Rows of same key, kind=1

3 Parts to mapping:
B base class mapping
A topping table for Topping
C option table for Topping
Together, 2-way mapping

optiontopping
id (FK) color id name kind aspect

Topping

∙ id

∙ name
--------------∙ color

B
C

A

(null)

25

Example of an object model
that doesn’t fit current ORM

• Case of attributes of the N-N relationship

• We know how to do this in the database…

• We can introduce a new entity in the middle but lose
crispness

• Related to problem of ternary relations, also missing

PizzaOrder 0..*
Option

1..* ∙ id
∙ name

∙ seqNumber
∙ priority

26

The Pizza Shop Example

� Free pizza for students in a dorm

� Student can:
◦ Choose toppings, size, order by room number

◦ Check on orders by room number

� Admin can:
◦ Add topping choices, sizes

◦ Mark the oldest pizza order “done”

� Available at www.cs.umb.edu/~eoneil/orm

27

The Pizza Shop Example

� Implemented using Hibernate and Microsoft EDM: same
architecture, similar code, same database schema

� Implemented as client-server app and web app: only the top-
level code changes
◦ Client-server means all the app code runs on the client, with

network connection to DB

◦ Web app means all the app code runs on the web server/app
server, clients use browser, DB can be on another server.

� Transactions are explicitly coded, not using container-
managed transactions (EJB/COM+ Serviced Components)

28

Presentation Layer:
User interface

Service layer: Runs

transactions in terms of entity

objects

Data Access Layer: Uses

ORM to do basic DB

interactions

Entity Objects

• Express data model

• Carry data

• Can be used in various layers

• Persisted by DB

The Pizza Shop: layers

Note: layers are not required by ORM,
they are just a good idea for such apps 29

UI: asks user about pizza
order, calls makeOrder() of
service layer

makeOrder runs a transaction creating

a new PizzaOrder and then calling

insertOrder() of DAO

Data Access Layer: Uses

ORM to persist new

PizzaOrder in DB

Entity Objects:

PizzaOrder,

Topping, PizzaSize

The Pizza Shop: objects, calls

30

SIGMOD08 Tutorial: Hibernate and EDM
www.cs.umb.edu/~eonei l/orm

11/19/2008

6

UI: asks user about pizza
order, calls makeOrder() of
service layer

makeOrder runs a transaction creating

a new PizzaOrder and then calling

insertOrder() of DAO

Data Access Layer: Uses

ORM to persist new

PizzaOrder in DB

The Pizza Shop: Client-server

§ All on client system
§ A “rich client”
§ An ordinary (single-
threaded) Java/C#
program

DB Server

31

The Pizza Shop: Web app

All on server system
(app server)
In a thread per request

Client using browser

UI: asks user about pizza
order (web page), calls
makeOrder() of service layer

makeOrder runs a transaction creating

a new PizzaOrder and then calling

insertOrder() of DAO

Data Access Layer: Uses

ORM to persist new

PizzaOrder in DB

DB Server
32

pizza_order

topping

pizza_size

id sizeid (FK) room status

order_topping

id name

orderid (FK) toppingid (FK)

id name

PizzaOrder Topping

PizzaSize

0..*0..*

0..*

Pizza Shop Entities, Mapping

Needed database schema:
has one table for each
entity, plus a link table for
N-N relationship

1

33

SysTime

sys_time
id current_day report_day

Entity Objects: ideally POJOs/POCOs

� POJO=plain old Java object, POCO=plain old CLR object
(C#, etc., CLR= Common Language Runtime of .NET)

◦ No special methods need to be implemented

◦ Objects are created with normal “new”, not some required factory

� Compare to EJB2 Entity Java Bean, COM “managed” objects:
these are hard to unit-test, tend to be “heavy-weight”

� EDM: entity objects are POCOs in some ways, but need to
extend system class EntityObject, and implement certain
methods. Version 2 of EDM is expected to improve this.

� Hibernate: entity objects are POJOs, with no required
superclass. All they need is a no-args constructor.

34

Example Simple POJO with properties
id and sizeName
public class PizzaSize {

private int id;
private String sizeName;
public PizzaSize () {}
public int getId() { return this.id;}
public String getSizeName() { return

this.sizeName;}
public void setSizeName(String sizeName) {

this.sizeName = sizeName;
}

… // equals, hashCode, other methods
}

Private fields for
properties

No-args constructor
Getter for id: “id” is a
read-only property “

Getter and setter
for sizeName:
“sizeName” is a
read-write property

35

Example Simple POCO
public class PizzaSize
{

private int _ID;
private string _SizeName;
public int ID {

get { return this._ID;}
}
public string SizeName {

get { return this._SizeName;}
set { this._SizeName = value;}

}
… // other methods

}

Private fields for
properties

Getter for id:
“id” is a read-
only property

Getter and setter
for sizeName:
“sizeName” is a
read-write property

Note: C# has handy property-specific syntax

36

SIGMOD08 Tutorial: Hibernate and EDM
www.cs.umb.edu/~eonei l/orm

11/19/2008

7

Hibernate entity POJO with
Relationships (can be generated)
public class PizzaOrder {

// Fields, constructors, property getters, setters
// as in simple POJO
public PizzaSize getPizzaSize() { return this.pizzaSize;}
public void setPizzaSize(PizzaSize pizzaSize) {

this.pizzaSize = pizzaSize;
}
public Set<Topping> getToppings() {

return this.toppings;
}

…
}

N-1 relationship
to PizzaSize

N-N relationship
to Topping

Standard
collection
type

37

EDM entity with Relationships
(generated code)

public partial class PizzaOrder:
global::System.Data.Objects.DataClasses.EntityObject

{ // Fields, constructors, property getters, setters
// setters have code to report property change
public PizzaSize PizzaSize

{
get { return PizzaSize object from superclass RelationshipManager; }
set { set value in superclass RelationshipManager; }

}
public global::System.Data.Objects.DataClasses.EntityCollection<Topping>

Topping
{
get { return EntityCollection<Topping> from superclass’s

RelationshipManager; }
}

…
}

N-1 relationship
to PizzaSize

N-N relationship
to Topping

Note: italics indicate pseudocode

Special collection
type, with familiar
API38

ßsuperclass

Sample code using entity objects

Just “dot through” the N-1 relationship: an order has a
unique PizzaSize object bound to it

order.getSize().getSizeName() //Hibernate/Java
order.Size.SizeName // EDM/C#

The N-N relationship to Toppings: an order has a collection
of Toppings:

for (Topping t: order.getToppings()) //Hibernate/Java
// do something with t

foreach (Topping t in order.Topping) // EDM/C#
// do something with t

39

Sample Code: persist new object

Hibernate:
session.persist(order);

Later, after commit, or optional earlier
session.flush(), order id is valid

EDM:
context.AddObject("PizzaOrder", order);

Later, after context.SaveChanges(), order id is valid

40

Sample code for a “finder”

To get PizzaOrder objects for a certain room and day, including
available Toppings (and PizzaSize) for each

Hibernate HQL: Toppings available in a lazy way
List<PizzaOrder> orders =

session.createQuery("from PizzaOrder o
where o.roomNumber = "+ roomNumber +
“ and o.day = " + day).list();

EDM Entity SQL: Toppings available by explicit request here:
List<PizzaOrder> orders = new ObjectQuery<PizzaOrder>("select

value o from PizzaEntities.PizzaOrder as o
where o.RoomNumber = " + roomNumber +
“ and o.Day = " + day, context).
Include("Topping").Include("PizzaSize").ToList();

41

Hibernate lazy fetch
� In the finder query, Hibernate returns PizzaOrder

objects with a “proxy” for the associated PizzaSize and a
“collection wrapper” for the Toppings collection

� As long as the runtime system is still alive, first access to
such an association results in a DB hit for the actual data

� First access after the runtime is shut down results in an
exception: it’s too late to be lazy

� This default strategy can be overridden in the mapping
file: lazy=“false” for PizzaOrder’s Toppings, for example.

� EDM: no implicit database access, so need to code what
you need

42

SIGMOD08 Tutorial: Hibernate and EDM
www.cs.umb.edu/~eonei l/orm

11/19/2008

8

More queries: some joins
� Example: Find all pizza orders for today (order’s day matches

sys_time’s current_day). No relationship for this, so no
connections in the object graph.

� Note no mapped association on day, so no handy collection of
object references to use. Use a join…

◦ EDM Entity SQL:
“select value o from PizzaEntities.PizzaOrder as o join PizzaEntities.SysTime as t

on o.Day = t.CurrentDay”

◦ EDM LINQ: language-integrated query
List<PizzaOrder> l = (from o in context.PizzaOrder join s in context.SysTime
on o.Day equals s.CurrentDay select o).ToList(); // no quotes! C# knows query

syntax and does type checking

◦ HQL:
“select o from PizzaOrder o, SysTime t where o.day = t.currentDay”

43

More query features

� Group by, having, order by

� Parameterized queries

� Pairs of objects returned, etc.

� Scalars and aggregates

� Build up queries using methods

� Hibernate: direct SQL queries

� stored procedures

� Control of fetch strategies

44

Entity objects in two layers
Service layer
� Create context and transaction

� Call DAO to get entity objects to
work on

� Or Call DAO to add objects

� Or Call objects’ own methods

� EDM: context.SaveChanges()/
Hibernate: session.flush() (can be
done automatically)

� Commit transaction, drop
context

DAO

� Run query for objects or

scalar results

� Add new objects

45

Entity Objects can do more

� So far, entity objects carry data to/from database

� i.e, represent persistent data

� But objects should have related behavior too

� No problem: add methods to entity classes

� Suppose app needs to compute optimal ordering
of toppings for building pizza

� List<Topping> x.getToppingsInBuildOrder()

� This should be method of PizzaOrder, an entity

46

Adding business methods to the
entity classes
� Hibernate: relatively simple entity classes, can

expand as needed

� EDM: generated code for entity classes: how can
we add to it?

� Partial classes of C# come to the rescue:
◦ Generated code for PizzaOrder provides data methods in

one partial class for PizzaOrder

◦ We code business methods in another partial class for
PizzaOrder, in another source file.

◦ Compiler puts them together
47

“Rich” Domain model

� Domain classes (entities) manage their persistent data, and
“rich” ones also provide app-related actions on their data

� Idea of DDD, domain-driven design (Fowler[13], Evans[14],
2004)

� Service layer coordinates actions between entities as needed
for transactional actions

� Service layer should be thin, delimiting transactions and
calling on domain classes for most of the work

� Data-only entities dubbed “anemic domain model”

48

SIGMOD08 Tutorial: Hibernate and EDM
www.cs.umb.edu/~eonei l/orm

11/19/2008

9

Presentation Layer:
User interface

Service layer: Runs transactions

using various domain objects

Data Access Layer: Uses

ORM

Domain/Entity Objects

• Express data model

• Carry data

• Can be used various layers

• Persisted by DB

• Have business methods

belonging to core code

The Pizza Shop: layers refined

Domain layer: business logic of
domain objects

49

Development Tools

50

Goal of using GUI to incrementally build a data model is
doable, coming, will be great
Example: EDM data model display:

50

Development Tools

� The tools

◦ Can turn the entity model into program classes

◦ Can turn the entity model into database schema

◦ Or turn database schema into an entity model

◦ Or turn a set of classes into an entity model

� Pizza Shop is simple enough to be specified by database schema +
one execution of tool

� For complex systems, you need to work with the XML mapping
files to get the full use of these systems today. (Or use
Hibernate/JPA source annotations instead of XML.)

� Luckily, only elementary XML is needed, let’s look at some files…

51

XML: Hibernate PizzaSize
<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN”
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>

<class name="pizza.domain.PizzaSize" table="PIZZA_SIZE">

<id name="id" type="int">

<column name="ID" />

<generator class="native" />

</id>

<property name="sizeName" type="string">

<column name="SIZE_NAME" length="30" not-null="true" unique="true" />

</property>

</class>

</hibernate-mapping>

52

XML for EDM PizzaSize: 3 parts
<EntityType Name="PizzaSize">

<Key><PropertyRef Name="ID" /></Key>

<Property Name="ID" Type="Int32" Nullable="false" />

<Property Name="SizeName" Type="String" Nullable="false" MaxLength="50" />

<NavigationProperty Name="PizzaOrder“ Relationship = "PizzaModel.FK_PizzaOrder_PizzaSize"
FromRole="PizzaSize" ToRole="PizzaOrder" />

</EntityType> …

<EntityType Name="PizzaSize">

<Key><PropertyRef Name="ID" /></Key>

<Property Name="ID" Type="int" Nullable="false" StoreGeneratedPattern="Identity" />

<Property Name="SizeName" Type="nvarchar" Nullable="false" MaxLength="50" />

</EntityType> …

<EntityTypeMapping TypeName="IsTypeOf(PizzaModel.PizzaSize)">

<MappingFragment StoreEntitySet="PizzaSize">

<ScalarProperty Name="ID" ColumnName="ID" />

<ScalarProperty Name="SizeName" ColumnName="SizeName" />

</MappingFragment>

</EntityTypeMapping>

Conceptual
schema

Storage
schema

Mapping

53

EDM XML for Association
<EntityType Name="PizzaSize">

<Property …>

<NavigationProperty Name="PizzaOrder“
Relationship = "PizzaModel.FK_PizzaOrder_PizzaSize"

FromRole="PizzaSize" ToRole="PizzaOrder" />

</EntityType>

<Association Name="FK_PizzaOrder_PizzaSize">

<End Role="PizzaSize" Type="PizzaModel.PizzaSize" Multiplicity="1" />

<End Role="PizzaOrder" Type="PizzaModel.PizzaOrder" Multiplicity="*" />

</Association> …

<Association Name="FK_PizzaOrder_PizzaSize">

<End Role="PizzaSize" Type="PizzaModel.Store.PizzaSize" Multiplicity="1" />

<End Role="PizzaOrder" Type="PizzaModel.Store.PizzaOrder" Multiplicity="*" />

<ReferentialConstraint>

<Principal Role="PizzaSize"><PropertyRef Name="ID" /></Principal>

<Dependent Role="PizzaOrder“><PropertyRef Name="SizeID" /></Dependent>

</ReferentialConstraint>

</Association>

Conceptual
schema

Storage
schema

54

SIGMOD08 Tutorial: Hibernate and EDM
www.cs.umb.edu/~eonei l/orm

11/19/2008

10

The Entity Context

� Hibernate Session, EDM ObjectContext, seen as “session” and
“context” variables in previous code.

� Belongs to one thread as its object cache, usually for one
transaction lifetime, one request-response cycle.

� Usually defers updates to the database to end of transaction

� Ensures only one entity object for each id

� As a cache, avoids some rereads (loads by id) of database,
preventing some repeated-read anomalies if running at lower
isolation level.

� Caching: the database itself has the definitive cache, global to all
apps using it…

55

The Entity Context at work

56

Thread using
objects

Database
Cache (rows)

Database
On disk

Entity
context

1. Thread creates entity
context, starts
transaction

2. Accesses entity
objects

3. Commits
4. Drops entity context
5. Uses (reads) entity

objects outside
context

The Entity Contexts & the DB cache
Under Concurrent Access

57

Thread using
objects

Database
Cache (rows)

Database
On disk

Entity
context

Thread using
objects

Entity
context Other

apps

Database

Entity Object Life Cycle
� Birth: as a POJO or (semi) POCO, unconnected to the

context

� Or read in by query, so already connected to context

� Possibly modified by app

� If new, needs addition to context: save()/AddObject()

� By commit, its updates are saved to DB

� Lives on after context dropped, useful for results display

� Can be reattached to new context, but not covered here

� Normally, abandoned soon, garbage-collected

58

Queries and the object cache
� When a query delivers entity objects, the id’s may

already be in the cache

� Need to avoid duplicates, preserve app’s changes

� Hibernate flushes changes to DB before query by

default

� EDM, by default, preserves the older object of a certain
id, avoiding some DB writes at this point

� But tricky: need to flush changes affecting search
conditions to maintain query correctness.

59

Transactions
� Hibernate and EDM are designed for transactional apps

� Both support transactions involving single or multiple

DBs/resource managers, via JTA or DTC for distributed case
(JTA=Java Transaction API, DTC= Microsoft’s Distributed Transaction Coordinator)

� Both support both explicit transactions and container-managed
transactions

� We’re considering simple case of single DB, explicit transactions

� Still have choice in isolation level, mainly:

◦ Read-committed (RC)

◦ Read-committed with ORM-coordinated versioning

◦ Serializable (SR)

60

SIGMOD08 Tutorial: Hibernate and EDM
www.cs.umb.edu/~eonei l/orm

11/19/2008

11

Transactions
� RC, SR have usual meaning, handled in DB

� Also Snapshot Isolation for some DBs

� Pizza project uses SR, but easy to change

� RC often not enough, but RC + versioning is attractive

� Versioning by ORM provides “optimistic CC”:

◦ Context remembers original object state, or row version if
supported by DB

◦ For changed objects, compares saved vs. current DB state at
commit-time, throws an exception if changed

◦ Avoids lost updates otherwise possible with RC

◦ Refresh action available to help with retries

61

Conversations
� So far, each request has had one transaction, good

enough for Pizza Shop

� Some actions perceived as a unit to the user are made
up of several requests

� Example: Read a current bid amount, let user decide on
new bid, then make the new bid

� Two DB transactions here, since no DB transaction
should span the think time

� The two transactions are related: a “conversation” or
“session” or “business transaction” with one user

62

Conversations
� Example Conversation: Look at bid, think, update bid

� Someone else can slip in a bid update between my look
and update

� One solution: make my bid update contingent on the

bid amount still being what I saw before, abort second
transaction if not

� This is versioning again, now used across multiple
system transactions in the same context

63

Conversations and Sessions
� We’re thinking about a context spanning several requests of a

conversation so it can do version checking

----|---look----|------------think---------------|--update--|----

Tx1:10 ms 2 min Tx2:10 ms

� Expensive in memory, however, since the context must be kept
alive between requests, while the user thinks: above 20 ms vs 2020
ms, factor of 100

� Rather than holding a whole context for a conversation, we can
condense it down to a usually-small dataset as part of “session
data”, save nearly a factor of 100

� This can be held in the common database, but as unshared data,
has other possibilities too

64

Performance & Scalability: Assumptions

� One database server with plenty of memory

� Warm data is in DB server’s cache

� One or multiple application servers

� No shared mutable data on app servers

� All shared mutable data is in the database

� DB server’s cache data is fast to access over a
local network

� Standard use of pooled DB connections to avoid
connection-setup delays

65

Web app, small site

66

Object
layer

Database
Cache (rows)

Database
On disk

Entity
context

Object
layer

Entity
context

10 ms
latency

1 ms
latency

concurrent
HTTP request-
response cycles

Single
App Server

SIGMOD08 Tutorial: Hibernate and EDM
www.cs.umb.edu/~eonei l/orm

11/19/2008

12

Web app, larger site

67

Database
Cache (rows)

Database
On disk

Object
layer

Entity
context

Object
layer

Entity
context

10 ms
latency

1 ms
latency

concurrent
HTTP request-
response cycles

Object
layer

Entity
context

Multiple
App Servers

Single DB Server

Second-level caching
� If this simple design is maxing out, say with 1000s of

Tx/sec

◦ And is not sharing DB with other apps

◦ And specifically is overwhelming the DB

� Can try second-level caching to offload the DB

� Example: JBoss Cache, a transactional replicated
distributed cache

� i.e, can handle case of multiple app servers

� Involves more configuration, tuning, not easy

� Hopefully plenty of money for consultants at this point
68

Summary
� Relational technology continues to prove its

worth, and ORM is using it in full
� Only one deficiency of SQL 92 uncovered:

standard way to generate new unique id
� The object-relational impedance mismatch has

been largely overcome
� No textbooks yet, little academic work:

Hibernate semantics are “example-driven”…
� See sources, run web app (Hibernate version) at

www.cs.umb.edu/~eoneil/orm

69

Bibliography
In proceedings (subset):

[1] Adya, Atul, Blakely, Jose, Melnik, Sergey, Meralidhar, S., and the ADO.NET Team,
2007, Anatomy of the ADO.NET Entity Framework, In Proceedings of SIGMOD

2007, ACM Press, New York, NY.

[3] Bauer, Christian, King, Gavin 2006 Java Persistence with Hibernate, Manning

[5] Bernstein, Phil, Melnik, Sergey. 2007 Model Management 2.0—Manipulating Richer

Mappings. In Proceedings of SIGMOD 2007, ACM Press, New York, NY, 1-12.

[7] Hibernate, http://www.hibernate.org

[10] MSDN Library, 2006 The ADO.NET Entity Framework Overview,
http://msdn2.microsoft.com/en-us/library/aa697427(VS.80).aspx

Added:

[13] Fowler, Martin 2003 Patterns of Enterprise Application Architecture, Addison-
Wesley

[14] Evans, Eric 2004 Domain-Driven Design, Addison-Wesley

70

