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Classification

11.1 Introduction

(REVISED)

11.2 Boosting
Let T be a training set,

T={(x1,v1), - (@m:Ym)},

where x; € X and y; € {—1,1}. The labels y1, ..., ym, specify the class where
each of the examples x; belong; namely, we have y; = 1 of x; is a positive
example and y; = —1 if x; is a negative examples. If S = {z1,..., 2}, a
classifier is regarded as a function h : S — {—1,1}. Note that a classifier
places an example z in its correct class if zh(z) = 1.

AdaBoost, short for Adaptive Boosting, is a machine learning algorithm,
formulated by Yoav Freund and Robert Schapire. AdaBoost starts with a fam-
ily of weak classifiers W = {hy, ..., h:}, that is, with a collection of classifiers
that have high error rates and seeks to build a strong classifier h. Namely, if
h(z) = Zi’;‘l”” aihi(z) is a linear combination of the weak classifiers we seek
f as f(x) = sign(h(z)) for z € S.

The construction process is sequential. The weak classifier used at moment
t is h:. At each moment ¢ we have a probability distribution D; that gives
greater weight to examples that were misclassified in a previous step. We have

m

> Difx) = 1.

i=1
In the initial step, t = 1, the distribution is uniform, that is,

Dl(:vl) == Dl(:vm) = %
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Starting from the distribution D; the distribution D;41(x;) is given by

e*atyiht(zi)

Dija(z;) = Dt(xi)Tv
¢

where Z; is a normalization factor intended to ensure that Zﬁl Dyyi(x;) = 1.

Thus, Z; is given by

m

Zy = ZDt(Ii)e*atyiht(mi)_

i=1

Since e~*¥:ht(¥i) < 1 when y; = hy(2;) and e~ ¥Rt (@) > 1 when y; # hy(z;),
it follows that Diyq1(x;) > Di(x;), when hy is wrong on z; and Dyiq(z;) <

Dy (x;), when h; is correct on x;.

Theorem 11.1. Let D be a probability distribution on the set S = {x1, ...

and let h : S — {—1,1} be a classifier. Define

The minimum value of Z(«) is achieved when

1. 1—¢
a=—=In ,
2 €

where € is the probability of error

€= Z{D(Cﬂiﬂyi # hi(w;)}.
i—1

Proof. We have

dz i
d_ = Z _yih((Ei)D(in)e_ayih(mi)
[0}
=1

== {D(@i)e |y = h(z:)} + Y _{D(@:)e®|yi # hi(w:)}
=—e %1 —¢€)+ e,

Thus, the value of o for which Z is minimal is given by o = 5 In

Theorem 11.2. For the training error of f(x) = sign(h(z)) we have:

T
<[[%-
t=1

| Glh(a) # i)

) T}
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Proof. Note that

D i t ) .
AR e CORES S SPRTEY
Hi:1 Z;
= 71 6_22:1 aryihe(z;)
7
mHizl Zz
_ 1 e Yi S o1 athe(@i)
7
mTi—y Zi
_ 1 e~ vih(zi)
- .
m]li_1 Zi
The last equality implies
t
e VM) = mDy (i) [ ] 2. (11.1)

i=1

For the classifier f = sign (Z’;m‘” atht> define

=1

0 otherwise.

r(a) = {1 if f(z) # v,

In other words, xs(z) = 1 if and only if the classifier f erred on z. Thus, the

error rate of fis ey = L 3" v r(w;).

If f(zi) # vi, then we have either f(z;) = 1 (and therefore, h(z;) > 0)
and y; = —1, or f(z;) = —1 (and therefore, h(x;) < 0) and y; = 1. Thus, in
either case we have y;h(x;) < 0, which implies e~ ¥"(#) > 1 which implies
xf(2:) < e7¥iM@) Consequently, taking into account Equality (11.1), we have

m m T T
% Xh(i) < %Z e_yih(mi) = Z (H Zt> DT+1 (:vz) = H Zs.
i=1 =1 =1 \t=1 t=1

This allows us to conclude that Hthl Z; is an upper bound of the training
error.

Since oy = %ln 1;—? it follows that

7 = ZDt(xi)e_atyiht(wi)
i=1

= Z{Dt(xi)eﬂt | yi = he(xi)} + Z{Dt(xi)eat | yi # he(xi) }

=1 —e)e ™ +ege ™

= 2\/ Et(l - Et).
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Algorithm 11.2.1: The Adaboost Algorithm
Data: A data set (z1,91),..., (®m,ym), where z; € X and y; € {—1,1}
Result: A boosted classifier h
1 initialize weights Di(x;) = # for1<i<m
2 for t =1 to timas do
3 select a training set drawn from the distribution Dy;
4 train he such that e, = > ;" {D¢(xs) | yi # he(zs)} is minimal;
5 if €, > 0.5 then
6 reset D; to D1 and abandon h:
7 end
8 set ax = 0.5log 1;“;
9 update Diq1(x;) = Z% -Dt(:ci)efatyih‘(”i);
10 end
11 f(z) = 23:1 arh:(z)
12 return h(z) = sign(f(x))

The pseudocode of the AdaBoost is shown in Algorithm 11.2.1. The al-
gorithm maintains a weight distribution D;(z;) on the training instances
T1,...,ZT, from which the data subset S; is chosen for each classifier h;.
Initially, the distribution is uniform, so all instances have equal chances to
participate in the training set. The training error €, is also weighted by the
distribution, such that €; is the sum of the distribution weights of the in-
stances misclassified by h;. We require that this error be less than % (which

2
is the error rate of a classifier that would assign classes at random).

11.3 Bagging

Bagging is a technique invented by L. Breiman [3]. The term “bagging” is an
acronym of bootstrap aggregating.

As before, a learning set consists of a data set L = {(x;,y;) | 1 <i < m},
where y; is either the class label or a numerical label. Assume that we have
an algorithm for using this learning set to form a predictor ¢(z, L).

Suppose that we are given a sequence of learning sets (L), each consisting
of my independent observations from the same underlying distribution as L.
Our goal is to use the sequence (L) to get a better predictor than ¢(z, L) by
using the sequence of predictors (¢(x, Ly).

If y is numerical one could use the average of ¢(z,Ly), that is ¢a(z) =
Er(¢(z,L)), where Ey, is expectation over L and A denotes aggregation.

If ¢(xz, L) predicts a class j, 1 < j < J, then one method of aggregating is
by voting.

Usually, we have a single learning set L. Still, an imitation of the process
leading to ¢4 can be done by taking bootstrap samples {L(P)} from L and
form {¢(x, LBV}, If y is numerical take ¢p as
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¢p(x) = afgpd(z, LP).

The L) form replicate the data set, each consisting of n cases, drawn at
random, but with replacement from L. Each (y,,x,) may appear repeated
times or not at all in any particular £(5),

A critical factor in whether bagging improves the accuracy is the stability
of the procedure for constructing ¢. If changes in £ produces small changes in
¢, then ¢p will be close to ¢. Improvement will occur for unstable procedures,
where a small change in £ can result in a large change in . So, for unstable
procedures, bagging works well.
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