
Chapter 1

Compilation

1.1 Compilers

A compiler is a program that translates a source program written in a high-level program-
ming language such as Java, C#, or C, into an equivalent target program in a lower, level
language such as machine code, which can be executed directly by a computer. This trans-
lation is illustrated in Figure 1.1.

FIGURE 1.1 Compilation.

By equivalent, we mean semantics preserving : the translation should have the same
behavior as the original. This process of translation is called compilation.

1.1.1 Programming Languages

A programming language is an artificial language in which a programmer (usually a person)
writes a program to control the behavior of a machine, particularly a computer. Of course,
a program has an audience other than the computer whose behavior it means to control;
other programmers may read a program to understand how it works, or why it causes
unexpected behavior. So, it must be designed so as to allow the programmer to precisely
specify what the computer is to do in a way that both the computer and other programmers
can understand.

Examples of programming languages are Java, C, C++, C#, and Ruby. There are hun-
dreds, if not thousands, of di↵erent programming languages. But at any one time, a much
smaller number are in popular use.

Like a natural language, a programming language is specified in three steps:

1. The tokens, or lexemes, are described. Examples are the keyword if, the operator +,
constants such as 4 and ‘c’, and the identifier foo. Tokens in a programming language
are like words in a natural language.

2. One describes the syntax of programs and language constructs such as classes, meth-
ods, statements, and expressions. This is very much like the syntax of a natural lan-
guage but much less flexible.

3. One specifies the meaning, or semantics, of the various constructs. The semantics of
various constructs is usually described in English.

1

2 An Introduction to Compiler Construction in a Java World

Some programming languages, like Java, also specify various static type rules, that a
program and its constructs must obey. These additional rules are usually specified as part
of the semantics.

Programming language designers go to great lengths to precisely specify the structure
of tokens, the syntax, and the semantics. The tokens and the syntax are often described
using formal notations, for example, regular expressions and context-free grammars. The
semantics are usually described in a natural language such as English1. A good example
of a programming language specification is the Java Language Specification [Gosling et al.,
2005].

1.1.2 Machine Languages

A computer’s machine language or, equivalently, its instruction set is designed so as to
be easily interpreted by the computer itself. A machine language program consists of a
sequence of instructions and operands, usually organized so that each instruction and each
operand occupies one or more bytes and so is easily accessed and interpreted. On the other
hand, people are not expected to read a machine code program2. A machine’s instruction
set and its behavior are often referred to as its architecture.

Examples of machine languages are the instruction sets for both the Intel i386 family
of architectures and the MIPS computer. The Intel i386 is known as a complex instruction
set computer (CISC) because many of its instructions are both powerful and complex. The
MIPS is known as a reduced instruction set computer (RISC) because its instructions are
relatively simple; it may often require several RISC instructions to carry out the same oper-
ation as a single CISC instruction. RISC machines often have at least thirty-two registers,
while CISC machines often have as few as eight registers. Fetching data from, and storing
data in, registers are much faster than accessing memory locations because registers are part
of the computer processing unit (CPU) that does the actual computation. For this reason,
a compiler tries to keep as many variables and partial results in registers as possible.

Another example is the machine language for Oracle’s Java Virtual Machine (JVM)
architecture. The JVM is said to be virtual not because it does not exist, but because it is
not necessarily implemented in hardware3; rather, it is implemented as a software program.
We discuss the implementation of the JVM in greater detail in Chapter 7. But as compiler
writers, we are interested in its instruction set rather than its implementation.

Hence the compiler: the compiler transforms a program written in the high-level pro-
gramming language into a semantically equivalent machine code program.

Traditionally, a compiler analyzes the input program to produce (or synthesize) the
output program,

• Mapping names to memory addresses, stack frame o↵sets, and registers;

• Generating a linear sequence of machine code instructions; and

• Detecting any errors in the program that can be detected in compilation.

Compilation is often contrasted with interpretation, where the high-level language pro-
gram is executed directly. That is, the high-level program is first loaded into the interpreter

1Although formal notations have been proposed for describing both the type rules and semantics of
programming languages, these are not popularly used.

2But one can. Tools often exist for displaying the machine code in mnemonic form, which is more readable
than a sequence of binary byte values. The Java toolset provides javap for displaying the contents of class
files.

3Although Oracle has experimented with designing a JVM implemented in hardware, it never took o↵.
Computers designed for implementing particular programming languages rarely succeed.

Compilation 3

and then executed (Figure 1.2). Examples of programming languages whose programs may
be interpreted directly are the UNIX shell languages, such as bash and csh, Forth, and many
versions of LISP.

FIGURE 1.2 Interpretation

One might ask, “Why not interpret all programs directly?” There are two answers.
First is performance. Native machine code programs run faster than interpreted high-

level language programs. To see why this is so, consider what an interpreter must do with
each statement it executes: it must parse and analyze the statement to decode its meaning
every time it executes that statement; a limited form of compilation is taking place for every
execution of every statement. It is much better to translate all statements in a program to
native code just once, and execute that4.

Second is secrecy. Companies often want to protect their investment in the programs
that they have paid programmers to write. It is more di�cult (albeit not impossible) to
discern the meaning of machine code programs than of high-level language programs.

But, compilation is not always suitable. The overhead of interpretation does not always
justify writing (or, buying) a compiler. An example is the Unix Shell (or Windows shell)
programming language. Programs written in shell script have a simple syntax and so are
easy to interpret; moreover, they are not executed often enough to warrant compilation.
And, as we have stated, compilation maps names to addresses; some dynamic programming
languages (LISP is a classic example, but there are a myriad of newer dynamic languages)
depend on keeping names around at run-time.

1.2 Why Should We Study Compilers?

So why study compilers? Haven’t all the compilers been written? There are several reasons
for studying compilers.

1. Compilers are larger programs than the ones you have written in your programming
courses. It is good to work with a program that is like the size of the programs you
will be working on when you graduate.

2. Compilers make use of all those things you have learned about earlier: arrays, lists,
queues, stacks, trees, graphs, maps, regular expressions and finite state automata,

4Not necessarily always; studies have shown that just-in-time compilation, where a method is translated
the first time it is invoked, and then cached, or hotspot compilation, where only code that is interpreted
several times is compiled and cached, can provide better performance. Even so, in both of these techniques,
programs are partially compiled to some intermediate form such as Oracle’s Java Virtual Machine (JVM),
or Microsoft’s Common Language Runtime (CLR). The intermediate forms are smaller, and space can play
a role in run-time performance. We discuss just-in-time compilation and hotspot compilation in Chapter 8.

4 An Introduction to Compiler Construction in a Java World

context-free grammars and parsers, recursion, and patterns. It is fun to use all of
these in a real program.

3. You learn about the language you are compiling (in our case, Java).

4. You learn a lot about the target machine (in our case, both the Java Virtual Machine
and the MIPS computer).

5. Compilers are still being written for new languages and targeted to new computer
architectures. Yes, there are still compiler-writing jobs out there.

6. Compilers are finding their way into all sorts of applications, including games, phones,
and entertainment devices.

7. XML. Programs that process XML use compiler technology.

8. There is a mix of theory and practice, and each is relevant to the other.

9. The organization of a compiler is such that it can be written in stages, and each stage
makes use of earlier stages. So, compiler writing is a case study in software engineering.

10. Compilers are programs. And writing programs is fun.

1.3 How Does a Compiler Work? The Phases of Compilation

A compiler is usually broken down into several phases—components, each of which performs
a specific sub-task of compilation. At the very least, a compiler can be broken into a front
end and a back end (Figure 1.3).

FIGURE 1.3 A compiler: Analysis and synthesis.

The front end takes as input, a high-level language program, and produces as output
a representation (another translation) of that program in some intermediate language that
lies somewhere between the source language and the target language. We call this the
intermediate representation (IR). The back end then takes this intermediate representation
of the program as input, and produces the target machine language program.

1.3.1 Front End

A compiler’s front end

• Is that part of the compiler that analyzes the input program for determining its
meaning, and so

• Is source language dependent (and target machine, or target language independent);
moreover, it

Compilation 5

• Can be further decomposed into a sequence of analysis phases such as that illustrated
in Figure 1.4.

FIGURE 1.4 The front end: Analysis.

The scanner is responsible for breaking the input stream of characters into a stream of
tokens: identifiers, literals, reserved words, (one-, two-, three-, and four-character) operators,
and separators.

The parser is responsible for taking this sequence of lexical tokens and parsing against a
grammar to produce an abstract syntax tree (AST), which makes the syntax that is implicit
in the source program, explicit.

The semantics phase is responsible for semantic analysis: declaring names in a symbol
table, looking up names as they are referenced for determining their types, assigning types
to expressions, and checking the validity of types. Sometimes, a certain amount of storage
analysis is also done, for example, assigning addresses or o↵sets to variables (as we do in our
j-- compiler). When a programming language allows one to refer to a name that is declared
later on in the program, the semantics phase must really involve at least two phases (or two
passes over the program).

1.3.2 Back End

A compiler’s back end

• Is that part of the compiler that takes the IR and produces (synthesizes) a target
machine program having the same meaning, and so

• Is target language dependent (and source language independent); moreover, it

• May be further decomposed into a sequence of synthesis phases such as that illustrated
in Figure 1.5.

FIGURE 1.5 The back end: Synthesis.

The code generation phase is responsible for choosing what target machine instructions
to generate. It makes use of information collected in earlier phases.

The peephole phase implements a peephole optimizer, which scans through the generated
instructions looking locally for wasteful instruction sequences such as branches to branches
and unnecessary load/store pairs (where a value is loaded onto a stack or into a register
and then immediately stored back at the original location).

Finally, the object phase links together any modules produced in code generation and
constructs a single machine code executable program.

6 An Introduction to Compiler Construction in a Java World

1.3.3 “Middle End”

Sometimes, a compiler will have an optimizer, which sits between the front end and the
back end. Because of its location in the compiler architecture, we often call it the “middle
end,” with a little tongue-in-cheek.

FIGURE 1.6 The “middle end”: Optimization.

The purpose of the optimizer (Figure 1.6) is both to improve the IR program and to
collect information that the back end may use for producing better code. The optimizer
might do any number of the following:

• It might organize the program into what are called basic blocks: blocks of code from
which there are no branches out and into which there are no branches.

• From the basic block structure, one may then compute next-use information for de-
termining the lifetimes of variables (how long a variable retains its value before it is
redefined by assignment), and loop identification.

• Next-use information is useful for eliminating common sub-expressions and constant
folding (for example, replacing x + 5 by 9 when we know x has the value 4). It may
also be used for register allocation (deciding what variables or temporaries should
be kept in registers and what values to “spill” from a register for making room for
another).

• Loop information is useful for pulling loop invariants out of loops and for strength
reduction, for example, replacing multiplication operations by (equivalent but less
expensive) addition operations.

An optimizer might consist of just one phase or several phases, depending on the op-
timizations performed. These and other possible optimizations are discussed more fully in
Chapters 6 and 7.

1.3.4 Advantages to Decomposition

There are several advantages to separating the front end from the back end:

1. Decomposition reduces complexity. It is easier to understand (and implement) the
smaller programs.

2. Decomposition makes it possible for several individuals or teams to work concurrently
on separate parts, thus reducing the overall implementation time.

3. Decomposition permits a certain amount of re-use5 For example, once one has written
a front end for Java and a back end for the Intel Core Duo, one need only write a new
C front end to get a C compiler. And one need only write a single SPARC back end
to re-target both compilers to the Oracle SPARC architecture. Figure 1.7 illustrates
how this re-use gives us four compilers for the price of two.

5This depends on a carefully designed IR. We cannot count the number of times we have written front
ends with the intention of re-using them, only to have to rewrite them for new customers (with that same
intention!). Realistically, one ends up re-using designs more often than code.

Compilation 7

FIGURE 1.7 Re-use through decomposition.

Decomposition was certainly helpful to us, the authors, in writing the j-- compiler as it
allowed us better organize the program and to work concurrently on distinct parts of it.

1.3.5 Compiling to a Virtual Machine: New Boundaries

The Java compiler, the program invoked when one types, for example,

> javac MyProgram.java

produces a .class file called MyProgram.class, that is, a byte code6 program suitable for
execution on a Java Virtual Machine (JVM). The source language is Java; the target machine
is the JVM. To execute this .class file, one types

> java MyProgram

which e↵ectively interprets the JVM program. The JVM is an interpreter, which is imple-
mented based on the observation that almost all programs spend most of their time in a
small part of their code. The JVMmonitors itself to identify these “hotspots” in the program
it is interpreting, and it compiles these critical methods to native code; this compilation is
accompanied by a certain amount of in-lining: the replacement of method invocations by the
method bodies. The native code is then executed, or interpreted, on the native computer.
Thus, the JVM byte code might be considered an IR, with the Java “compiler” acting as
the front end and the JVM acting as the back end, targeted to the native machine on which
it is running.

The IR analogy to the byte code makes even more sense in Microsoft’s Common Lan-
guage Runtime (CLR) architecture used in implementing its .Net tools. Microsoft has writ-
ten compilers (or front ends) for Visual Basic, C++, C#, and J++ (a variant of Java), all of
which produce byte code targeted for a common architecture (the CLR). Using a technique
called just-in-time (JIT) compilation, the CLR compiles each method to native code and
caches that native code when that method is first invoked. Third parties have implemented
other front-end compilers for other programming languages, taking advantage of the existing
JIT compilers.

In this textbook, we compile a (non-trivial) subset of Java, which we call j--. In the first
instance, we target the Oracle JVM. So in a sense, this compiler is a front end. Nevertheless,
our compiler implements many of those phases that are traditional to compilers and so it
serves as a reasonable example for an introductory compilers course.

The experience in writing a compiler targeting the JVM is deficient in one respect: one
does not learn about register allocation because the JVM is a stack-based architecture and
has no registers.

6“byte code” because the program is represented as a sequence of byte instructions and operands (and
operands occupy several bytes).

8 An Introduction to Compiler Construction in a Java World

1.3.6 Compiling JVM Code to a Register Architecture

To remedy this deficiency, we (beginning in Chapter 6) discuss the compilation of JVM
code to code for the MIPS machine, which is a register-based architecture. In doing this, we
face the challenge of mapping possibly many variables to a limited number of fast registers.

One might ask, “Why don’t we simply translate j-- programs to MIPS programs?” After
all, C language programs are always translated to native machine code.

The strategy of providing an intermediate virtual machine code representation for one’s
programs has several advantages:

1. Byte code, such as JVM code or Microsoft’s CLR code is quite compact. It takes up
less space to store (and less memory to execute) and it is more amenable to transport
over the Internet. This latter aspect of JVM code made Java applets possible and
accounts for much of Java’s initial success.

2. Much e↵ort has been invested in making interpreters like the JVM and the CLR run
quickly; their just-in-time compilers are highly optimized. One wanting a compiler
for any source language need only write a front-end compiler that targets the virtual
machine to take advantage of this optimization.

3. Implementers claim, and performance tests support, that hotspot interpreters, which
compile to native code only those portions of a program that execute frequently,
actually run faster than programs that have been fully translated to native code.
Caching behavior might account for this improved performance.

Indeed, the two most popular platforms (Oracle’s Java platform and Microsoft’s .NET
architecture) follow the strategy of targeting a virtual, stack-based, byte-code architecture
in the first instance, and employing either just-in-time compilation or HotSpot compilation
for implementing these “interpreters”.

1.4 An Overview of the j-- to JVM Compiler

Our source language, j--, is a proper subset of the Java programming language. It has about
half the syntax of Java; that is, its grammar that describes the syntax is about half the size
of that describing Java’s syntax. But j-- is a non-trivial, object-oriented programming lan-
guage, supporting classes, methods, fields, message expressions, and a variety of statements,
expressions, and primitive types. j-- is more fully described in Appendix B.

Our j-- compiler is organized in an object-oriented fashion. To be honest, most compilers
are not organized in this way. Nor are they written in languages like Java, but in lower-level
languages such as C and C++ (principally for better performance). As the previous section
suggests, most compilers are written in a procedural style. Compiler writers have generally
bucked the object-oriented organizational style and have relied on the more functional
organization described in Section 1.3.

Even so, we decided to structure our j-- compiler on object-oriented principles. We chose
Java as the implementation language because that is the language our students know best
and the one (or one like it) in which you will program when you graduate. Also, you are
likely to be programming in an object-oriented style.

It has many of the components of a traditional compiler, and its structure is not neces-
sarily novel. Nevertheless, it serves our purposes:

Compilation 9

• We learn about compilers.

• We learn about Java. j-- is a non-trivial subset of Java. The j-- compiler is written in
Java.

• We work with a non-trivial object-oriented program.

1.4.1 j-- Compiler Organization

Our compiler’s structure is illustrated in Figure 1.8.

FIGURE 1.8 The j-- compiler.

The entry point to the j-- compiler is Main7. It reads in a sequence of arguments, and
then goes about creating a Scanner object, for scanning tokens, and a Parser object for
parsing the input source language program and constructing an abstract syntax tree (AST).

Each node in the abstract syntax tree is an object of a specific type, reflecting the under-
lying linguistic component or operation. For example, an object of type JCompilationUnit
sits at the root (the top) of the tree for representing the program being compiled. It has
sub-trees representing the package name, list of imported types, and list of type (that is,
class) declarations. An object of type JMultiplyOp in the AST, for example, represents a
multiplication operation. Its two sub-trees represent the two operands. At the leaves of the
tree, one finds JVariable objects and objects representing constant literals.

Each type of node in the AST defines three methods, each of which performs a specific
task on the node, and recursively on its sub-trees:

1. preAnalyze(Context context) is defined only for the types of nodes that appear
near the top of the AST because j-- does not implement nested classes. Pre-analysis
deals with declaring imported types, defined class names, and class member head-
ers (method headers and fields). This is required because method bodies may make
forward references to names declared later on in the input. The context argument is

7This and other classes related to the compiler are part of the jminusminus package under $j/j--/
src, where $j is the directory that contains the j-- root directory.

10 An Introduction to Compiler Construction in a Java World

a string of Context (or subtypes of Context) objects representing the compile-time
symbol table of declared names and their definitions.

2. analyze(Context context) is defined over all types of AST nodes. When invoked
on a node, this method declares names in the symbol table (context), checks types
(looking up the types of names in the symbol table), and converts local variables to
o↵sets in a method’s run-time local stack frame where the local variables reside.

3. codegen(CLEmitter output) is invoked for generating the Java Virtual Machine
(JVM) code for that node, and is applied recursively for generating code for any
sub-trees. The output argument is a CLEmitter object, an abstraction of the output
.class file.

Once Main has created the scanner and parser,

1. Main sends a compilationUnit() message to the parser, causing it to parse the pro-
gram by a technique known as recursive descent, and to produce an AST.

2. Main then sends the preAnalyze() message to the root node (an object of type
JCompilationUnit) of the AST. preAnalyze() recursively descends the tree down to
the class member headers for declaring the types and the class members in the symbol
table context.

3. Main then sends the analyze() message to the root JCompilationUnit node, and
analyze() recursively descends the tree all the way down to its leaves, declaring
names and checking types.

4. Main then sends the codegen() message to the root JCompilationUnit node, and
codegen() recursively descends the tree all the way down to its leaves, generating JVM
code. At the start of each class declaration, codegen() creates a new CLEmitter object
for representing a target .class file for that class; at the end of each class declaration,
codegen() writes out the code to a .class file on the file system.

5. The compiler is then done with its work. If errors occur in any phase of the compilation
process, the phase attempts to run to completion (finding any additional errors) and
then the compilation process halts.

In the next sections, we briefly discuss how each phase does its work. As this is just an
overview and a preview of what is to come in subsequent chapters, it is not important that
one understand everything at this point. Indeed, if you understand just 15%, that is fine.
The point to this overview is to let you know where stu↵ is. We have the rest of the text to
understand how it all works!

1.4.2 Scanner

The scanner supports the parser. Its purpose is to scan tokens from the input stream of
characters comprising the source language program. For example, consider the following
source language HelloWorld program.

import java.lang.System;

public class HelloWorld {
// The only method.

public static void main(String [] args) {

Compilation 11

System.out.println ("Hello , World !");
}

}

The scanner breaks the program text into atomic tokens. For example, it recognizes each
of import, java, ., lang, ., System, and ; as being distinct tokens.

Some tokens, such as java, HelloWorld, and main, are identifiers. The scanner catego-
rizes theses tokens as IDENTIFIER tokens. The parser uses these category names to identify
the kinds of incoming tokens. IDENTIFIER tokens carry along their images as attributes; for
example, the first IDENTIFIER in the above program has java as its image. Such attributes
are used in semantic analysis.

Some tokens are reserved words, each having its unique name in the code. For example,
import, public, and class are reserved word tokens having the names IMPORT, PUBLIC,
and CLASS. Operators and separators also have distinct names. For example, the separators
., ;, {, }, [and] have the token names DOT, SEMI, LCURLY, RCURLY, LBRACK, and RBRACK,
respectively.

Others are literals; for example, the string literal Hello, World! comprises a single
token. The scanner calls this a STRING_LITERAL.

Comments are scanned and ignored altogether. As important as some comments are to
a person who is trying to understand a program8, they are irrelevant to the compiler.

The scanner does not first break down the input program text into a sequence of tokens.
Rather, it scans each token on demand; each time the parser needs a subsequent token, it
sends the nextToken() message to the scanner, which then returns the token id and any
image information.

The scanner is discussed in greater detail in Chapter 2.

1.4.3 Parser

The parsing of a j-- program and the construction of its abstract syntax tree (AST) is
driven by the language’s syntax, and so is said to be syntax directed. In the first instance,
our parser is hand-crafted from the j-- grammar, to parse j-- programs by a technique known
as recursive descent.

For example, consider the following grammatical rule describing the syntax for a com-
pilation unit:

compilationUnit ::= [package qualifiedIdentifier ;]
{import qualifiedIdentifier ;}
{typeDeclaration} EOF

This rule says that a compilation unit consists of

• An optional package clause (the brackets [] bracket optional clauses),

• Followed by zero or more import statements (the curly brackets {} bracket clauses
that may appear zero or more times),

• Followed by zero or more type declarations (in j--, these are only class declarations),

• Followed by an end of file (EOF).

8But we know some who swear by the habit of stripping out all comments before reading a program
for fear that those comments might be misleading. When programmers modify code, they often forget to
update the accompanying comments.

12 An Introduction to Compiler Construction in a Java World

The tokens PACKAGE, SEMI, IMPORT, and EOF are returned by the scanner.
To parse a compilation unit using the recursive descent technique, one would write a

method, call it compilationUnit(), which does the following:

1. If the next (the first, in this case) incoming token were PACKAGE, would scan it (ad-
vancing to the next token), invoke a separate method called qualifiedIdentifier()
for parsing a qualified identifier, and then we must scan a SEMI (and announce a
syntax error if the next token were not a SEMI).

2. While the next incoming token is an IMPORT, scan it and invoke qualifiedIdentifier
() for parsing the qualified identifier, and then we must again scan a SEMI. We save
the (imported) qualified identifiers in a list.

3. While the next incoming token is not an EOF, invoke a method called typeDeclaration
() for parsing the type declaration (in j-- this is only a class declaration), and we must
scan a SEMI. We save all of the ASTs for the type declararations in a list.

4. We must scan the EOF.

Here is the Java code for compilationUnit(), taken directly from Parser.

public JCompilationUnit compilationUnit () {
int line = scanner.token (). line ();
TypeName packageName = null; // Default
if (have(PACKAGE)) {

packageName = qualifiedIdentifier ();
mustBe(SEMI);

}
ArrayList <TypeName > imports = new ArrayList <TypeName >();
while (have(IMPORT)) {

imports.add(qualifiedIdentifier ());
mustBe(SEMI);

}
ArrayList <JAST > typeDeclarations = new ArrayList <JAST >();
while (!see(EOF)) {

JAST typeDeclaration = typeDeclaration ();
if (typeDeclaration != null) {

typeDeclarations.add(typeDeclaration);
}

}
mustBe(EOF);
return new JCompilationUnit(scanner.fileName(), line ,

packageName , imports , typeDeclarations);
}

In Parser, see() is a Boolean method that looks to see whether or not its argument
matches the next incoming token. Method have() is the same, but has the side-e↵ect of
scanning past the incoming token when it does match its argument. Method mustBe()
requires that its argument match the next incoming token, and raises an error if it does not.

Of course, the method typeDeclaration() recursively invokes additional methods for
parsing the HelloWorld class declaration; hence the technique’s name: recursive descent.
Each of these parsing methods produces an AST constructed from some particular type of
node. For example, at the end of compilationUnit(), a JCompilationUnit node is created
for encapsulating any package name (none here), the single import (having its own AST),
and a single class declaration (an AST rooted at a JClassDeclaration node).

Parsing in general, and recursive descent in particular, are discussed more fully in
Chapter 3.

Compilation 13

1.4.4 AST

An abstract syntax tree (AST) is just another representation of the source program. But it
is a representation that is much more amenable to analysis. And the AST makes explicit
that syntactic structure which is implicit in the original source language program. The AST
produced for our HelloWorld program from Section 1.4.2 is illustrated in Figure 1.9. The
boxes in the figure represent ArrayLists.

All classes in the j-- compiler that are used to represent nodes in the AST extend
the abstract class JAST and have names beginning with the letter J. Each of these classes
implements the three methods required for compilation:

1. preAnalyze() for declaring types and class members in the symbol table;

2. analyze() for declaring local variables and typing all expressions; and

3. codegen() for generating code for each sub-tree.

We discuss these methods briefly below, and in greater detail later on in this book. But
before doing that, we must first briefly discuss how we build a symbol table and use it for
declaring (and looking up) names and their types.

1.4.5 Types

As in Java, j-- names and values have types. A type indicates how something can behave.
A boolean behaves di↵erently from an int; a Queue behaves di↵erently from a Hashtable.
Because j-- (like Java) is statically typed, its compiler must determine the types of all names
and expressions. So we need a representation for types.

Java already has a representation for its types: objects of type java.lang.Class from
the Java API. Because j-- is a subset of Java, why not use class Class? The argument is
more compelling because j--’s semantics dictate that it may make use of classes from the
Java API, so its type representation must be compatible with Java’s.

But, because we want to define our own functionality for types, we encapsulate the Class
objects within our own class called Type. Likewise, we encapsulate java.lang.reflect.
Method, java.lang.reflect.Constructor, java.lang.reflect.Field, and java.lang.
reflect.Member within our own classes, Method, Constructor, Field, and Member, re-
spectively9. And we define a su�ciently rich set of operations on these representational
classes.

There are places, for example in the parser, where we want to denote a type by its
name before that types is known or defined. For this we introduce TypeName and (because
we need array types) ArrayTypeName. During the analysis phase of compilation, these type
denotations are resolved: they are looked up in the symbol table and replaced by the actual
Types they denote.

1.4.6 Symbol Table

During semantic analysis, the compiler must construct and maintain a symbol table in
which it declares names. Because j-- (like Java) has a nested scope for declared names, this
symbol table must behave like a pushdown stack.

9These private classes are defined in the Type.java file, together with the public class Type. In the
code tree, we have chosen to put many private classes in the same file in which their associated public class
is defined.

14 An Introduction to Compiler Construction in a Java World

FIGURE 1.9 An AST for the HelloWorld program.

Compilation 15

In the j-- compiler, this symbol table is represented as a singly-linked list of Context
objects, that is, objects whose types extend the Context class. Each object in this list
represents some area of scope and contains a mapping from names to definitions. Every
context object maintains three pointers: one to the object representing the surrounding
context, one to the object representing the compilation unit context (at the root), and one
to the enclosing class context.

For example, there is a CompilationUnitContext object for representing the scope
comprising the program, that is, the entire compilation unit. There is a ClassContext
object for representing the scope of a class declaration. The ClassContext has a reference
to the defining class type; this is used to determine where we are (that is, in which class
declaration the compiler is in) for settling issues such as accessibility.

There is a MethodContext (a subclass of LocalContext) for representing the scopes of
methods and, by extension, constructors. Finally, a LocalContext represents the scope of
a block, including those blocks that enclose method bodies. Here, local variable names are
declared and mapped to LocalVariableDefns.

1.4.7 preAnalyze() and analyze()

preAnalyze() is a first pass at type checking. Its purpose is to build that part of the symbol
table that is at the top of the AST, to declare both imported types and types introduced
by class declarations, and to declare the members declared in those classes. This first pass
is necessary for declaring names that may be referenced before they are defined. Because
j-- does not support nested classes, this pass need not descend into the method bodies.

analyze() picks up where preAnalyze() left o↵. It continues to build the symbol table,
decorating the AST with type information and enforcing the j-- type rules. The analyze()
phase performs other important tasks:

• Type checking: analyze() computes the type for every expression, and it checks its
type when a particular type is required.

• Accessibility: analyze() enforces the accessibility rules (expressed by the modifiers
public, protected, and private) for both types and members.

• Member finding: analyze() finds members (messages in message expressions, based
on signature, and fields in field selections) in types. Of course, only the compile-time
member name is located; polymorphic messages are determined at run-time.

• Tree rewriting: analyze() does a certain amount of AST (sub) tree rewriting. Implicit
field selections (denoted by identifiers that are fields in the current class) are made
explicit, and field and variable initializations are rewritten as assignment statements
after the names have been declared.

1.4.8 Stack Frames

analyze() also does a little storage allocation. It allocates positions in the method’s current
stack frame for formal parameters and (other) local variables.

The JVM is a stack machine: all computations are carried out atop the run-time stack.
Each time a method is invoked, the JVM allocates a stack frame, a contiguous block of
memory locations on top of the run-time stack. The actual arguments substituted for formal
parameters, the values of local variables, and temporary results are all given positions within
this stack frame. Stack frames for both a static method and for an instance method are
illustrated in Figure 1.10.

16 An Introduction to Compiler Construction in a Java World

FIGURE 1.10 Run-time stack frames in the JVM.

In both frames, locations are set aside for n formal parameters and m local variables;
n,m, or both may be 0. In the stack frame for a static method, these locations are allocated
at o↵sets beginning at 0. But in the invocation of an instance method, the instance itself, that
is, this, must be passed as an argument, so in an instance method’s stack frame, location
0 is set aside for this, and parameters and local variables are allocated o↵set positions
starting at 1. The areas marked “computations” in the frames are memory locations set
aside for run-time stack computations within the method invocation.

While the compiler cannot predict how many stack frames will be pushed onto the stack
(that would be akin to solving the halting problem), it can compute the o↵sets of all formal
parameters and local variables, and compute how much space the method will need for its
computations, in each invocation.

1.4.9 codegen()

The purpose of codegen() is to generate JVM byte code from the AST, based on information
computed by preAnalyze() and analyze(). codegen() is invoked by Main’s sending the
codegen() message to the root of the AST, and codegen() recursively descends the AST,
generating byte code.

The format of a JVM class file is rather arcane. For this reason, we have implemented
a tool, CLEmitter (and its associated classes), to ease the generation of types (for example,
classes), members, and code. CLEmitter may be considered an abstraction of the JVM class
file; it hides many of the gory details. CLEmitter is described further in Appendix D.

Main creates a new CLEmitter object. JClassDeclaration adds a new class,
using addClass(). JFieldDeclaration writes out the fields using addField().

Compilation 17

JMethodDeclarations and JConstructorDeclarations add themselves, using addMethod
(), and then delegate their code generation to their bodies. It is not rocket science.

The code for JMethodDeclaration.codegen() illustrates what these codegen() meth-
ods look like:

public void codegen(CLEmitter output) {
output.addMethod(mods , name , descriptor , null , false);
if (body != null) {

body.codegen(output);
}

// Add implicit RETURN
if (returnType == Type.VOID) {

output.addNoArgInstruction(RETURN);
}

}

In general, we generate only the class headers, members, and their instructions and
operands. CLEmitter takes care of the rest. For example, here is the result of executing

> javap HelloWorld

where javap is a Java tool that disassembles HelloWorld.class:

public class HelloWorld extends java.lang.Object
{

public HelloWorld ();
Code:
Stack=1, Locals=1, Args_size =1
0: aload_0
1: invokespecial #8; // Method java/lang/Object."<init >":()V
4: return

public static void main(java.lang.String []);
Code:
Stack=2, Locals=1, Args_size =1
0: getstatic #17; //Field java/lang/System.out:

//Ljava/io/PrintStream;
3: ldc #19; // String Hello , World!
5: invokevirtual #25; // Method java/io/PrintStream.println:

//(Ljava/lang/String ;)V
8: return

}

We have shown only the instructions; tables such as the constant table have been left
out of our illustration.

In general, CLEmitter does the following for us:

• Builds the constant table and generates references that the JVM can use to reference
names and constants; one need only generate the instructions and their operands,
using names and literals.

• Computes branch o↵sets and addresses; the user can use mnemonic labels.

• Computes the argument and local variable counts and the stack space a method
requires to do computation.

• Constructs the complete class file.

The CLEmitter is discussed in more detail in Appendix D. JVM code generation is
discussed more fully in Chapter 5.

18 An Introduction to Compiler Construction in a Java World

1.5 j-- Compiler Source Tree

The zip file j--.zip containing the j-- distribution can be downloaded from http://www.cs
.umb.edu/j--. The zip file may be unzipped into any directory of your choosing. Through-
out this book, we refer to this directory as $j.

For a detailed description of what is in the software bundle; how to set up the compiler
for command-line execution; how to set up, run, and debug the software in Eclipse10; and
how to add j-- test programs to the test framework, see Appendix A.

$j/j--/src/jminusminus contains the source files for the compiler, where jminusminus
is a package. These include

• Main.java, the driver program;

• a hand-written scanner (Scanner.java) and parser (Parser.java);

• J*.java files defining classes representing the AST nodes;

• CL*.java files supplying the back-end code that is used by j-- for creating JVM byte
code; the most important file among these is CLEmitter.java, which provides the
interface between the front end and back end of the compiler;

• S*.java files that translate JVM code to SPIM files (SPIM is an interpreter for the
MIPS machine’s symbolic assembly language);

• j--.jj, the input file to JavaCC11 containing the specification for generating (as
opposed to hand-writing) a scanner and parser for the j-- language; JavaCCMain, the
driver program that uses the scanner and parser produced by JavaCC; and

• Other Java files providing representation for types and the symbol table.

$j/j--/bin/j-- is a script to run the compiler. It has the following command-line
syntax:

Usage: j-- <options > <source file >
where possible options include:

-t Only tokenize input and print tokens to STDOUT
-p Only parse input and print AST to STDOUT
-pa Only parse and pre -analyze input and print AST to STDOUT
-a Only parse , pre -analyze , and analyze input and print AST to STDOUT
-s <naive|linear|graph > Generate SPIM code
-r <num > Max. physical registers (1-18) available for allocation; default =8
-d <dir > Specify where to place output files; default =.

For example, the j– program $j/j--/tests/pass/HelloWorld.java can be compiled
using j-- as follows:

> $j/j--/bin/j-- $j/j--/tests/pass/HelloWorld.java

to produce a HelloWorld.class file under pass folder within the current directory, which
can then be run as

> java pass.HelloWorld

to produce as output,

> Hello , World!

10An open-source IDE; http://www.eclipse.org.
11A scanner and parser generator for Java; http://javacc.dev.java.net/.

Compilation 19

Enhancing j--

Although j-- is a subset of Java, it provides an elaborate framework with which one may
add new Java constructs to j--. This will be the objective of many of the exercises in this
book. In fact, with what we know so far about j--, we are already in a position to start
enhancing the language by adding new albeit simple constructs to it.

As an illustrative example, we will add the division12 operator to j--. This involves
modifying the scanner to recognize / as a token, modifying the parser to be able to parse
division expressions, implementing semantic analysis, and finally, code generation for the
division operation.

In adding new language features to j--, we advocate the use of the Extreme Program-
ming13 (XP) paradigm, which emphasizes writing tests before writing code. We will do
exactly this with the implementation of the division operator.

Writing Tests

Writing tests for new language constructs using the j-- test framework involves

• Writing pass tests, which are j-- programs that can successfully be compiled using the
j-- compiler;

• Writing JUnit test cases that would run these pass tests;

• Adding the JUnit test cases to the j-- test suite; and finally

• Writing fail tests, which are erroneous j-- programs. Compiling a fail test using j--
should result in the compiler’s reporting the errors and gracefully terminating without
producing any .class files for the erroneous program.

We first write a pass test Division.java for the division operator, which simply has a
method divide() that accepts two arguments x and y, and returns the result of dividing
x by y. We place this file under the $j/j--/tests/pass folder; pass is a package.

package pass;

public class Division {
public int divide(int x, int y) {

return x / y;
}

}

Next, we write a JUnit test case DivisionTest.java, with a method testDivide()
that tests the divide() method in Division.java with various arguments. We place this
file under $j/j--/tests/junit folder; junit is a package.

public class DivisionTest extends TestCase {
private Division division;

protected void setUp() throws Exception {
super.setUp ();
division = new Division ();

}

protected void tearDown () throws Exception {
super.tearDown ();

12We only handle integer division since j-- supports only ints as numeric types.
13http://www.extremeprogramming.org/.

20 An Introduction to Compiler Construction in a Java World

}

public void testDivide () {
this.assertEquals(division.divide(0, 42), 0);
this.assertEquals(division.divide (42, 1), 42);
this.assertEquals(division.divide (127, 3), 42);

}
}

Now that we have a test case for the division operator, we must register it with
the j-- test suite by making the following entry in the suite() method of junit.
JMinusMinusTestRunner.

TestSuite suite = new TestSuite ();
...
suite.addTestSuite(DivisionTest.class);
return suite;

j-- supports only int as a numeric type, so the division operator can operate only on
ints. The compiler should thus report an error if the operands have incorrect types; to test
this, we add the following fail test Division.java and place it under the $j/j--/tests/
fail folder; fail is a package.

package fail;

import java.lang.System;

public class Division {
public static void main(String [] args) {

System.out.println(’a’ / 42);
}

}

Changes to Lexical and Syntactic Grammars

Appendix B specifies both the lexical and the syntactic grammars for the j-- language;
the former describes how individual tokens are composed and the latter describes how
these tokens are put together to form language constructs. Chapters 2 and 3 describe such
grammars in great detail.

The lexical and syntactic grammars for j-- are also available in the files $j/j--/
lexicalgrammar and $j/j--/grammar, respectively. For every language construct that is
newly added to j--, we strongly recommend that these files be modified accordingly so that
they accurately describe the modified syntax of the language. Though these files are for
human consumption alone, it is a good practice to keep them up-to-date.

For the division operator, we add a line describing the operator to $j/j--/
lexicalgrammar under the operators section.

DIV ::= "/"

where DIV is the kind of the token and "/" is its image (string representation).
Because the division operator is a multiplicative operator, we add it to the grammar

rule describing multiplicative expressions in the $j/j--/grammar file.

multiplicativeExpression ::= unaryExpression // level 2
{(STAR | DIV) unaryExpression}

The level number in the above indicates operator precedence. Next, we discuss the
changes in the j-- codebase to get the compiler to support the division operation.

Compilation 21

Changes to Scanner

Here we only discuss the changes to the hand-written scanner. Scanners can also be gener-
ated; this is discussed in Chapter 2. Before changing Scanner.java, we must register DIV as
a new token, so we add the following to the TokenKind enumeration in the TokenInfo.java
file.

enum TokenKind {
EOF("<EOF >"),
...,
STAR ("*") ,
DIV ("/") ,
...

}

The method that actually recognizes and returns tokens in the input is getNextToken
(). Currently, getNextToken() does not recognize / as an operator, and reports an error
when it encounters a single / in the source program. In order to recognize the operator, we
replace the getNextToken() code in Scanner.

if (ch == ’/’) {
nextCh ();
if (ch == ’/’) {

// CharReader maps all new lines to ’\n’
while (ch != ’\n’ && ch != EOFCH) {

nextCh ();
}

}
else {

reportScannerError(
"Operator / is not supported in j- -.");

}
}

with the following.

if (ch == ’/’) {
nextCh ();
if (ch == ’/’) {

// CharReader maps all new lines to ’\n’
while (ch != ’\n’ && ch != EOFCH) {

nextCh ();
}

}
else {

return new TokenInfo(DIV , line);
}

}

Changes to Parser

Here we only discuss the changes to the hand-written parser. Parsers can also be generated;
this is discussed in Chapter 3. We first need to define a new AST node to represent the
division expression. Because the operator is a multiplicative operator like *, we can model
the AST for the division expression based on the one (JMultiplyOp) for *. We call the new
AST node JDivideOp, and because division expression is a binary expression (one with two
operands), we define it in JBinaryExpression.java as follows:

class JDivideOp extends JBinaryExpression {
public JDivideOp(int line , JExpression lhs , JExpression rhs) {

22 An Introduction to Compiler Construction in a Java World

super(line , "/", lhs , rhs);
}

public JExpression analyze(Context context) {
return this;

}

public void codegen(CLEmitter output) {

}
}

To parse expressions involving division operator, we modify the multiplicativeExpres
- sion() method in Parser.java as follows:

private JExpression multiplicativeExpression () {
int line = scanner.token (). line ();
boolean more = true;
JExpression lhs = unaryExpression ();
while (more) {

if (have(STAR)) {
lhs = new JMultiplyOp(line , lhs ,

unaryExpression ());
}
else if (have(DIV)) {

lhs = new JDivideOp(line , lhs ,
unaryExpression ());

}
else {

more = false;
}

}
return lhs;

}

Semantic Analysis and Code Generation

Since int is the only numeric type supported in j--, analyzing the division operator is
trivial. It involves analyzing its two operands, making sure each type is int, and setting the
resulting expression’s type to int. We thus implement analyze() in the JDivideOp AST
as follows:

public JExpression analyze(Context context) {
lhs = (JExpression) lhs.analyze(context);
rhs = (JExpression) rhs.analyze(context);
lhs.type (). mustMatchExpected(line(), Type.INT);
rhs.type (). mustMatchExpected(line(), Type.INT);
type = Type.INT;
return this;

}

Generating code for the division operator is also trivial. It involves generating (through
delegation) code for its operands and emitting the JVM (IDIV) instruction for the (integer)
division of two numbers. Hence the following implementation for codegen() in JDivideOp.

public void codegen(CLEmitter output) {
lhs.codegen(output);
rhs.codegen(output);
output.addNoArgInstruction(IDIV);

}

Compilation 23

The IDIV instruction is a zero-argument instruction. The operands that it operates on
must to be loaded on the operand stack prior to executing the instruction.

Testing the Changes

Finally, we need to test the addition of the new (division operator) construct to j--. This
can be done at the command prompt by running

> ant

which compiles our tests using the hand-written scanner and parser, and then tests them.
The results of compiling and running the tests are written to the console (STDOUT).

Alternatively, one could compile and run the tests using Eclipse; Appendix A describes
how.

1.6 Organization of This Book

This book is organized like a compiler. You may think of this first chapter as the main
program, the driver if you like. It gives the overall structure of compilers in general, and of
our j-- compiler in particular.

In Chapter 2 we discuss the scanning of tokens, that is, lexical analysis.
In Chapter 3 we discuss context-free grammars and parsing. We first address the re-

cursive descent parsing technique, which is the strategy the parser uses to parse j--. We
then go on to examine the LL and LR parsing strategies, both of which are used in various
compilers today.

In Chapter 4 we discuss type checking, or semantic analysis. There are two passes re-
quired for this in the j-- compiler, and we discuss both of them. We also discuss the use of
attribute grammars for declaratively specifying semantic analysis.

In Chapter 5 we discuss JVM code generation. Again we address the peculiarities of code
generation in our j-- compiler, and then some other more general issues in code generation.

In Chapter 6 we discuss translating JVM code to instructions native to a MIPS com-
puter; MIPS is a register-based RISC architecture. We discuss what is generally called
optimization, a process by which the compiler produces better (that is, faster and smaller)
target programs. Although our compiler has no optimizations other than register allocation,
a general introduction to them is important.

In Chapter 7 register allocation is the principal challenge.
In Chapter 8 we discuss several celebrity compilers.
Appendix A gives instructions on setting up a j-- development environment.
Appendix B contains the lexical and syntactic grammar for j--.
Appendix C contains the lexical and syntactic grammar for Java.
Appendix D describes the CLEmitter interface and also provides a group-wise summary

of the JVM instruction set.
Appendix E describes James Larus’s SPIM simulator for the MIPS family of computers

and how to write j-- programs that target SPIM.

24 An Introduction to Compiler Construction in a Java World

1.7 Further Readings

The Java programming language is fully described in [Gosling et al., 2005]. The Java Virtual
Machine is described in [Lindholm and Yellin, 1999].

Other classic compiler texts include [Aho et al., 2007], [Appel, 2002],
[Cooper and Torczon, 2011], [Allen and Kennedy, 2002], and [Muchnick, 1997].

A reasonable introduction to testing is [Whittaker, 2003]. Testing using the JUnit frame-
work is nicely described in [Link and Fröhlich, 2003] and [Rainsberger and Stirling, 2005]. A
good introduction to extreme programming, where development is driven by tests, is [Beck
and Andres, 2004].

1.8 Exercises

Exercise 1.1. We suggest you use either Emacs or Eclipse for working with the j-- compiler.
In any case, you will want to get the j-- code tree onto your own machine. If you choose to
use Eclipse, do the following.

a. Download Eclipse and install it on your own computer. You can get Eclipse from http
://www.eclipse.org.

b. Download the j-- distribution from http://www.cs.umb.edu/j--/.

c. Follow the directions in Appendix A for importing the j-- code tree as a project into
Eclipse.

Exercise 1.2. Now is a good time to begin browsing through the code for the j-- compiler.
Locate and browse through each of the following classes.

a. Main

b. Scanner

c. Parser

d. JCompilationUnit

e. JClassDeclaration

f. JMethodDeclaration

g. JVariableDeclaration

h. JBlock

i. JMessageExpression

j. JVariable

k. JLiteralString

Compilation 25

The remaining exercises may be thought of as optional. Some students (and their pro-
fessors) may choose to go directly to Chapter 2. Exercises 1.3 through 1.9 require studying
the compiler in its entirety, if only cursorily, and then making slight modifications to it.
Notice that, in these exercises, many of the operators have di↵erent levels of precedence,
just as * has a di↵erent level of precedence in j-- than does +. These levels of precedence are
captured in the Java grammar (in Appendix C); for example, the parser uses one method
to parse expressions involving * and /, and another to parse expressions involving + and -.

Exercise 1.3. To start, follow the process outlined in Section 1.5 to implement the Java
remainder operator %.

Exercise 1.4. Implement the Java shift operators, <<, >>, and >>>.

Exercise 1.5. Implement the Java bitwise inclusive or operator, |.

Exercise 1.6. Implement the Java bitwise exclusive or operator, ^.

Exercise 1.7. Implement the Java bitwise and operator, &.

Exercise 1.8. Implement the Java unary bitwise complement operator ~, and the Java
unary + operator. What code is generated for the latter?

Exercise 1.9. Write tests for all of the exercises (1.3 through 1.8) done above. Put these
tests where they belong in the code tree and modify the JUnit framework in the code tree
for making sure they are invoked.

Exercise 1.10 through 1.16 are exercises in j-- programming. j-- is a subset of Java and
is described in Appendix B.

Exercise 1.10. Write a j-- program Fibonacci.java that accepts a number n as input
and outputs the nth Fibonacci number.

Exercise 1.11. Write a j-- program GCD.java that accepts two numbers a and b as input,
and outputs the Greatest Common Divisor (GCD) of a and b. Hint: Use the Euclidean
algorithm14

Exercise 1.12. Write a j-- program Primes.java that accepts a number n as input, and
outputs the all the prime numbers that are less than or equal to n. Hint: Use the Sieve of
Eratosthenes algorithm15 For example,

> java Primes 11

should output

> 2 3 5 7 11

Exercise 1.13. Write a j-- program Date.java that accepts a date in “yyyy-mm-dd”
format as input, and outputs the date in “Month Day, Year” format. For example16,

> java Date 1879 -03 -14

should output

> March 14, 1879

14See http://en.wikipedia.org/wiki/Euclidean_algorithm.
15See http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes.
16March 14, 1879, is Albert Einstein’s birthday.

26 An Introduction to Compiler Construction in a Java World

Exercise 1.14. Write a j-- program Palindrome.java that accepts a string as input, and
outputs the string if it is a palindrome (a string that reads the same in either direction),
and outputs nothing if it is not. The program should be case-insensitive to the input. For
example17:

> java Palindrome Malayalam

should output:

> Malayalam

Exercise 1.15. Suggest enhancements to the j-- language that would simplify the imple-
mentation of the programs described in the previous exercises (1.10 through 1.14).

Exercise 1.16. For each of the j-- programs described in Exercises 1.10 through 1.14, write
a JUnit test case and integrate it with the j-- test framework (Appendix A describes how
this can be done).

Exercises 1.17 through 1.25 give the reader practice in reading JVM code and using
CLEmitter for producing JVM code (in the form of .class files). The JVM and the CLEmitter
are described in Appendix D.

Exercise 1.17. Disassemble (Appendix A describes how this can be done) a Java class
(say java.util.ArrayList), study the output, and list the following:

• Major and minor version

• Size of the constant pool table

• Super class

• Interfaces

• Field names, their access modifiers, type descriptors, and their attributes (just names)

• Method names, their access modifiers, descriptors, exceptions thrown, and their
method and code attributes (just names)

• Class attributes (just names)

Exercise 1.18. Compile $j/j--/tests/pass/HelloWorld.java using the j-- compiler and
Oracle’s javac compiler. Disassemble the class file produced by each and compare the output.
What di↵erences do you see?

Exercise 1.19. Disassemble the class file produced by the j-- compiler for $j/j--/tests/
pass/Series.java, save the output in Series.bytecode. Add a single-line (//...) com-
ment for each JVM instruction in Series.bytecode explaining what the instruction does.

Exercise 1.20. Write the following class names in internal form:

• java.lang.Thread

• java.util.ArrayList

• java.io.FileNotFoundException

17Malayalam is the language spoken in Kerala, a southern Indian state.

Compilation 27

• jminusminus.Parser

• Employee

Exercise 1.21. Write the method descriptor for each of the following constructors/method
declarations:

• public Employee(String name)...

• public Coordinates(float latitude, float longitude)...

• public Object get(String key)...

• public void put(String key, Object o)...

• public static int[] sort(int[] n, boolean ascending)...

• public int[][] transpose(int[][] matrix)...

Exercise 1.22. Write a program (Appendix A describes how this can be done) GenGCD.
java that produces, using CLEmitter, a GCD.class file with the following methods:

// Returns the Greatest Common Divisor (GCD) of a and b.
public static int compute(int a, int b) {

...
}

Running GCD as follows:

> java GCD 42 84

should output

> 42

Modify GenGCD.java to handle java.lang.NumberFormatException that Integer.
parseInt() raises if the argument is not an integer, and in the handler, print an appropriate
error message to STDERR.

Exercise 1.23. Write a program GenPrimality.java that produces, using CLEmitter,
Primality.class, Primality1.class, Primality2.class, and Primality3.class files,
where Primality.class is an interface with the following method:

// Returns true if the specified number is prime , false
// otherwise.
public boolean isPrime(int n);

and Primality1.class, Primality2.class, and Primality3.class are three di↵erent
implementations of the interface. Write a j-- program TestPrimality.java that has a test
driver for the three implementations.

Exercise 1.24. Write a program GenWC.java that produces, using CLEmitter, a WC.class
which emulates the UNIX command wc that displays the number of lines, words, and bytes
contained in each input file.

Exercise 1.25. Write a program GenGravity.java that produces, using CLEmitter, a
Gravity.class file which computes the acceleration g due to gravity at a point on the
surface of a massive body. The program should accept the mass M of the body, and the
distance r of the point from body’s center as input. Use the following formula for computing
g:

28 An Introduction to Compiler Construction in a Java World

g =
GM

r

2

,

where G = 6.67⇥ 10�11

Nm2

kg2 , is the universal gravitational constant.

