CS220: Applied Discrete Mathematics

Summer 2022

Instructor: Bang Tran

 Instructor: Ban 	g Tran (Ben/Benzie/Bang)	
Email:	bang.tran001@umb.edu	
Office hours:	10:30 AM – 12:30 PM (Tuesday & Thursday) via <u>Zoom</u>	
• Tutor: Kleopatr	a Gjini (Kleo)	
Email:	<u>Kleopatra.Gjini001@umb.edu</u>	
Office hours:	1:30 PM – 2:30 PM (Wednesday) via <u>BlackBoard</u>	
• SI: TBD		
• SI: TBD Email:	TBD	

Q	P∧Q	
true	true	
false	false	
true	false	
false	false	
	Q true false true false	

Applied Discrete Mathematics @ Class #1 - Logic, Proofs, Boolean Algebra

UMa Bost

Disjunction (OR)

• Binary Operator, Symbol: \lor

Q	P∨Q
true	true
false	true
true	true
false	false
	Q true false true false

Applied Discrete Mathematics @ Class #1 - Logic, Proofs, Boolean Algebra

15

15

Exclusive Or (XOR) • Binary Operator, Symbol: \oplus Ρ Q $P \oplus Q$ true true false true false true false true true false false false 16 Applied Discrete Mathematics @ Class #1 - Logic, Proofs, Boolean Algebra

Implication (if - then) • Binary Operator, Symbol: \rightarrow Ρ Q $P \rightarrow Q$ true true true false false true false true true false false true UMa Bost 17 Applied Discrete Mathematics @ Class #1 - Logic, Proofs, Boolean Algebra 17

Equivalence • The two formulas P and Q are logically equivalent iff the truth conditions of P are the same as the the truth conditions of Q • Notation: $p \equiv q$ • Example: $\neg (P \land Q) \equiv (\neg P \lor \neg Q)$ Ρ Q ¬(P∧Q) (¬P)∨(¬Q) $\neg(P \land Q) \leftrightarrow (\neg P) \lor (\neg Q)$? true true false false ? true false true true ? false true true true ? false false true true

20

Applied Discrete Mathematics @ Class #1 - Logic, Proofs, Boolean Algebra

UMas Bosto

Equivalence

• Is
$$(P \land Q) \equiv \neg (P \lor Q)$$
?

• Answer: No

Р	Q	(P∧Q)	–(P∨Q)
true	true	true	false
true	false	false	true
false	true	false	true
false	false	false	true

Applied Discrete Mathematics @ Class #1 - Logic, Proofs, Boolean Algebra

21

Direct proof:

- An implication p→q can be proved by showing that if p is true, then q is also true.
- <u>Example</u>: Give a direct proof of the theorem "If n is odd, then n² is odd."
- <u>Idea</u>: Assume that the hypothesis of this implication is true (n is odd). Then use rules of inference and known theorems to show that q must also be true (n² is odd).

Applied Discrete Mathematics @ Class #1 - Logic, Proofs, Boolean Algebra

⁴⁸

<section-header><section-header><text><text><equation-block><text><text><text>

51

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><section-header>

