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CS220: Applied Discrete 
Mathematics

Summer 2022

Instructor: Bang Tran

1

About this course
• Textbook

Discrete Mathematics and Its Applications, by Kenneth H. Rosen, 
WCB/McGraw-Hill, 2019 (8th Edition).

• Course webpage:
https://cs.umb.edu/~bangtqh/teaching/cs220_summer22/

• Gradescope: For homework & exam submissions!
https://www.gradescope.com/courses/367617

• Piazza: For discussing outside of the class
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Course staff
• Instructor: Bang Tran (Ben/Benzie/Bang)

Email: bang.tran001@umb.edu
Office hours: 10:30 AM – 12:30 PM (Tuesday & Thursday) via Zoom

• Tutor: Kleopatra Gjini (Kleo)
Email: Kleopatra.Gjini001@umb.edu
Office hours: 1:30 PM – 2:30 PM (Wednesday) via BlackBoard

• SI: TBD
Email: TBD
Office hours: TBD
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Evaluations
• Attendances (20%)

• Fill an online forms (must have attendance code)
• Two sections mean two form (must choose the correct form)

• Homework (50%)
• 7 assignments
• The 8th homework for make-up grade
• Submit to gradescope

• Exam (30%)
• August 24, 2022 (Time: TBD)
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Logic and Proofs
Chapter 1 in the textbook
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Logic in computer science
• Crucial for mathematical reasoning

• Used for designing electronic circuitry

• Logic is a system based on propositions.

• A proposition is a statement that is either true or false (not both)

• Corresponds to 1 and 0 in digital circuits
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Propositional Logic
• A proposition is a statement that is either true or false.

• Examples of propositions:
• Two plus two is four.
• Toronto is the capital of Canada.
• There is an infinite number of primes.

• Not propositions:
• What time is it?
• Have a nice day!

• A proposition's truth value is a value indicating whether the proposition is 
true or false.
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The Statement/Proposition Game

“Elephants are bigger than mice.”
• Is this a statement ?
• Is this a proposition ?
• What is the truth value of the proposition ? 

520 < 111
• Is this a statement ?
• Is this a proposition ?
• What is the truth value of the proposition ? 

y < 210
• Is this a statement ?
• Is this a proposition ?
• What is the truth value of the proposition ? 
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Yes
Yes
true

Yes
Yes
false

Yes
No

Its truth value depends on the value of y, but this value is not 
specified. We call this type of statement a 
propositional function or open sentence.
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The Statement/Proposition Game
“Today is January 23 and  99 < 5.”

• Is this a statement ?
• Is this a proposition ?
• What is the truth value of the proposition ? 

“Please do not fall asleep.”
• Is this a statement ?
• Is this a proposition ?
• What is the truth value of the proposition ? 

“If elephants were red, they could hide in cherry 
trees”

• Is this a statement ?
• Is this a proposition ?
• What is the truth value of the proposition ? 
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Yes
Yes
false

No
No
Doesn’t exits

Yes
Yes
Probably false

9

The Statement/Proposition Game

“x < y if and only if y > x.”
• Is this a statement ?
• Is this a proposition ?
• What is the truth value of the proposition ? 
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Yes
Yes

true
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Combining Propositions
• As we have seen in the previous examples, one or more propositions 

can be combined to form a single compound proposition.

• We formalize this by denoting propositions with letters such as 
𝑃, 𝑄, 𝑅, 𝑆, and introducing several logical operators.  
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Logical Operators (Connectives)
• We will examine the following logical operators:

• Negation (NOT) ¬
• Conjunction (AND) ∧
• Disjunction (OR) ∨

• Exclusive or (XOR) ⊕
• Implication        (if – then) →
• Biconditional  (if and only if) ↔

• Truth tables can be used to show how these operators can combine 
propositions to compound propositions.
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Negation (NOT)

• Unary Operator, Symbol:  ¬
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P ¬P

true false

false true
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Conjunction (AND)

• Binary Operator, Symbol:  Ù
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P Q PÙQ
true true true
true false false
false true false
false false false
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Disjunction (OR)

• Binary Operator, Symbol:  Ú
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P Q PÚQ
true true true
true false true
false true true
false false false
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Exclusive Or (XOR)

• Binary Operator, Symbol:  Å
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P Q P Å Q

true true false

true false true

false true true

false false false
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Implication (if - then)

• Binary Operator, Symbol:  ®

Applied Discrete Mathematics @ Class #1 - Logic, Proofs, Boolean Algebra17

P Q P ® Q

true true true

true false false

false true true

false false true
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Biconditional (if and only if)

• Binary Operator, Symbol:  «
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P Q P « Q

true true true

true false false

false true false

false false true
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Proposition exercises 
• Given following statements:

• P = I finish writing my computer program before the lunch

• Q = I shall play tennis in the afternoon

• R = The sun is shining

• S = The humidity is low

• Translate these sentences into proposition logic:

• If the sun is shining, I shall play tennis this afternoon.

• Finishing the writing of my computer program before lunch is necessary for my playing tennis this afternoon.

• Low humidity and sunshine are sufficient for me to play tennis this afternoon.
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𝑅 → 𝑄

𝑄 → 𝑃

𝑆 ∧ 𝑅 → 𝑄

P is necessary for Q: 𝑄 → 𝑃

P is sufficient for Q: 𝑃 → 𝑄

19

Equivalence
• The two formulas P and Q are logically equivalent iff the truth conditions of P are the same as the 

the truth conditions of Q

• Notation: 𝑝 ≡ 𝑞

• Example: ¬ 𝑃 ∧ 𝑄 ≡ (¬𝑃 ∨ ¬𝑄)
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P Q ¬(PÙQ) (¬P)Ú(¬Q) ¬(PÙQ) « (¬P)Ú(¬Q)

true true false false ?
true false true true ?
false true true true ?
false false true true ?
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Equivalence
• Is 𝑃 ∧ 𝑄 ≡ ¬ (𝑃 ∨ 𝑄) ?

• Answer: No
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P Q (PÙQ) ¬(PÚQ)

true true true false
true false false true
false true false true
false false false true

21

Logical equivalances

• Identity laws
• 𝑝 ∧ 𝑡𝑟𝑢𝑒 ≡ 𝑝
• 𝑝 ∨ 𝑓𝑎𝑙𝑠𝑒 ≡ 𝑝

• Domination laws
• 𝑝 ∧ 𝑓𝑎𝑙𝑠𝑒 ≡ 𝑓𝑎𝑙𝑠𝑒
• 𝑝 ∨ 𝑡𝑟𝑢𝑒 ≡ 𝑡𝑟𝑢𝑒

• Idempotent laws
• 𝑝 ∧ 𝑝 ≡ 𝑝
• 𝑝 ∨ 𝑝 ≡ 𝑝

• Commutative laws
• 𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝
• 𝑝 ∨ 𝑞 ≡ 𝑞 ∨ 𝑝

• Double negation law
• ¬ ¬𝑝 ≡ 𝑝

• Associate laws
• 𝑝 ∨ 𝑞 ∨ 𝑟 ≡ 𝑝 ∨ (𝑞 ∨ 𝑟)
• 𝑝 ∧ 𝑞 ∧ 𝑟 ≡ 𝑝 ∧ (𝑞 ∧ 𝑟)

• Distributive laws
• 𝑝 ∨ 𝑞 ∧ 𝑟 ≡ 𝑝 ∨ 𝑟 ∧ (𝑝 ∨ 𝑟)
• 𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ (𝑝 ∧ 𝑟)

• De Morgan’s laws
• ¬ 𝑝∧𝑞 ≡ ¬𝑞 ∨¬𝑝
• ¬ 𝑝∨𝑞 ≡ ¬𝑝 ∧¬𝑞

• Absorption laws
• 𝑝 ∨ 𝑝 ∧ 𝑞 ≡ 𝑝
• 𝑝 ∧ 𝑝 ∨ 𝑞 ≡ 𝑝

• Negation laws
• 𝑝 ∨¬p ≡ 𝑡𝑟𝑢𝑒
• 𝑝 ∧¬𝑝 ≡ 𝑓𝑎𝑙𝑠𝑒

Applied Discrete Mathematics @ Class #1 - Logic, Proofs, Boolean Algebra22

22



7/19/22

12

Tautologies and Contradictions
• A tautology is a statement that is always true.
• Examples: 

• 𝑅Ú(¬𝑅)
• ¬(𝑃Ù𝑄)«(¬𝑃)Ú(¬𝑄)

• If 𝑆®𝑇 is a tautology, we write SÞT.
• If S	« T		is a tautology, we write SÛT.
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Tautologies and Contradictions
• A contradiction is a statement that is always false.

• Examples: 
• 𝑅Ù(¬𝑅)
• ¬(¬(𝑃Ù𝑄)«(¬𝑃)Ú(¬𝑄))

• The negation of any tautology is a contradiction, and 
• The negation of any contradiction is a tautology.
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Exercises
1. Show that (𝑃 ∨ ¬P) is a tautology

2. Show that (𝑃 ∧ ¬𝑃) is a contradiction

3. Show that ¬ 𝑃 ∨ ¬𝑄 ⇒ ¬𝑃

4. Show that 𝑃 ∧ 𝑃 → 𝑄 ⇒ 𝑄

5. Determine whether 𝑃 ⊕𝑄 ⊕𝑃 is a tautology, contradiction or neither

6. Determine whether 𝑃 ⊕𝑄 ∨ (𝑃 ⊕¬𝑄) is a tautology, contradiction or neither
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Mathematical Reasoning

• We need mathematical reasoning to
• Determine whether a mathematical argument is correct or incorrect and
• Construct mathematical arguments.

• Mathematical reasoning is not only important for conducting proofs 
and program verification, but also for artificial intelligence systems 
(drawing inferences).
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Terminology
• An axiom is a basic assumption about mathematical structures that 

needs no proof.

• We can use a proof to demonstrate that a particular statement is 
true. A proof consists of a sequence of statements that form an 
argument.

• The steps that connect the statements in such a sequence are the 
rules of inference.

• Cases of incorrect reasoning are called fallacies.

• A theorem is a statement that can be shown to be true. 
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Terminology
• A lemma is a simple theorem used as an intermediate result in the proof of another theorem.

• A corollary is a proposition that follows directly from a theorem that has been proved.

• A conjecture is a statement whose truth value is unknown. Once it is proven, it becomes a 
theorem.

• Rules of inference provide the justification of the steps used in a proof.

• One important rule is called modus ponens or the law of detachment. It is based on the 
tautology  (𝑝Ù(𝑝®𝑞))® 𝑞. We write it in the following way:

p
p ® q
____
\ q

Applied Discrete Mathematics @ Class #1 - Logic, Proofs, Boolean Algebra28
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Rules of Inference
• The general form of a rule of inference is:

p1
p2
.
.
.
pn

____
\ q
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The rule states that if p1 and p2 and … and pn are all true, then q is 
true as well.

These rules of inference can be used in any mathematical argument 
and do not require any proof.

29

Rules of Inference
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p∧q
_____
∴ p

Simplification

p
q

_____
∴ p∧q

Conjunction

¬q
p→q 

_____
∴ ¬p

Modus tollens

p→q
q→r 

_____
∴ p→r 

Hypothetical syllogism

p∨q
¬p

_____
∴ q 

Disjunctive syllogism

Modus ponens

p
p→q
_____
∴q

p
_____
∴ p ∨ q

Addition

p ∨ q 
¬p ∨ r

_____
∴ q ∨ r

Resolution

30
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Arguments
• Just like a rule of inference, an argument consists of one or more 

hypotheses and a conclusion. 

• We say that an argument is valid, if whenever all its hypotheses are 
true, its conclusion is also true.

• However, if any hypothesis is false, even a valid argument can lead to 
an incorrect conclusion. 
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Arguments
• Example:

“If 101 is divisible by 3, then 1012 is divisible by 9. 101 is divisible by 3. Consequently, 1012 is divisible by 9.”

• Although the argument is valid, its conclusion is incorrect, because one of the hypotheses is false 
(“101 is divisible by 3.”)

• Which rule was ued ?
P =  “101 is divisible by 3.”
Q = “1012 is divisible by 9.”

• Unfortunately, one of the hypotheses (P) is false. Therefore, the conclusion Q is incorrect.

• If in the above argument we replace 101 with 102, we could correctly conclude that 1022 is 
divisible by 9.
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P
P→Q 

_____
∴Q

Modus ponens

32
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Arguments
• Another example:

• “If it rains today, then we will not have a barbeque today. If we do not have a 
barbeque today, then we will have a barbeque tomorrow.
Therefore, if it rains today, then we will have a barbeque tomorrow.”

• This is a valid argument: If its hypotheses are true, then its conclusion 
is also true.

• Let us formalize the previous argument:
• p: “It is raining today.”
• q: “We will not have a barbecue today.”
• r: “We will have a barbecue tomorrow.”

• So the argument is of the following form:
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p→q
q→r 

_____
∴ p→r 

Hypothetical syllogism

33

Arguments
• Another example:

• Gary is either intelligent or a good actor.
• If Gary is intelligent, then he can count from 1 to 10.
• Gary can only count from 1 to 2.
• Therefore, Gary is a good actor.

• Let us formalize the argument as:
• 𝐼: “Gary is intelligent.”
• 𝐴: “Gary is a good actor.”
• 𝐶: “Gary can count from 1 to 10.”

Step Reason
1.   ¬𝐶 Hypothesis
2.   𝐼® 𝐶 Hypothesis
3.  ¬𝐼 Modus Tollens using (1) and (2)
4.   𝐴 Ú 𝐼 Hypothesis
5.   𝐴 Disjunctive Syllogism using (3) and (4)

• Conclusion: 𝐴 (“Gary is a good actor.”)

Applied Discrete Mathematics @ Class #1 - Logic, Proofs, Boolean Algebra34
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Arguments
• Yet another example:

• If you listen to me, you will pass CS 220.
• You passed CS 220.
• Therefore, you have listened to me.

• Is this argument valid?

• No, it assumes ((p®q) Ù q) ® p.

• This statement is not a tautology. It is false if p is false and q is true.

Applied Discrete Mathematics @ Class #1 - Logic, Proofs, Boolean Algebra35
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Predicate Calculus
Chapter 1.4 in the textbook
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Universal Quantification
• Let P(x) be a propositional function.

• Universally quantified sentence:
For all x in the universe of discourse P(x) is true.

• Using the universal quantifier ":
"x P(x)   “for all x P(x)” or “for every x P(x)”

• (Note: "x P(x) is either true or false, so it is a proposition, not a 
propositional function.)
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Universal Quantification
• Example: 

S(x): x is a UMB student.
G(x): x is a genius.

• What does "x (S(x) ® G(x)) mean ?

“If x is a UMB student, then x is a genius.”
or

“All UMB students are geniuses.”

Applied Discrete Mathematics @ Class #1 - Logic, Proofs, Boolean Algebra38
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Existential Quantification
• Existentially quantified sentence:

There exists an x in the universe of discourse for which P(x) is true.

• Using the existential quantifier $:
$x P(x)    “There is an x such that P(x).”

“There is at least one x such that P(x).”

• (Note: $x P(x) is either true or false, so it is a proposition, but no 
propositional function.)
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Existential Quantification
• Example: 

P(x): x is a UMB professor.
G(x): x is a genius.

• What does $x (P(x) Ù G(x)) mean ?

“There is an x such that x is a UMB professor and x is a genius.”
or

“At least one UMB professor is a genius.”
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Quantification
• Another example:

Let the universe of discourse be the real numbers.

• What does "x$y (x + y = 320) mean ?

“For every x there exists a y so that x + y = 320.”
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Is it true?

Is it true for the natural numbers?

yes

no

41

Disproof by Counterexample
• A counterexample to "x P(x) is an object c so that P(c) is false. 

• Statements such as "x (P(x) ® Q(x)) can be disproved by simply 
providing a counterexample.
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Statement: “All birds can fly.”
Disproved by counterexample: Penguin.

42
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Negation
• ¬("x P(x)) is logically equivalent to $x (¬P(x)).

• ¬($x P(x)) is logically equivalent to "x (¬P(x)).
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Quantification
• Introducing the universal quantifier " and the existential quantifier $

facilitates the translation of world knowledge into predicate calculus.
• Examples:

• Paul beats up all professors who fail him.
"x([Professor(x) Ù Fails(x, Paul)] ® BeatsUp(Paul, x))

• All computer scientists are either rich or crazy, but not both.
"x (CS(x) ® [Rich(x) Ù ¬Crazy(x)] Ú [¬Rich(x) Ù Crazy(x)] )

• Or, using XOR:
"x (CS(x) ® [Rich(x) Å Crazy(x)])
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More Practice for Predicate Logic
• Important points:

• Define propositional functions in a useful and reusable manner, just like functions in a 
computer program.

• Make sure your formalized statement evaluates to “true” in the context of the original 
statement and evaluates to “false” whenever the original statement is violated.

• More Examples:
• Jenny likes all movies that Peter likes (and possibly more).

"x [Movie(x) Ù Likes(Peter, x) ® Likes(Jenny, x)]

• There is exactly one UMass professor who won a Nobel prize
$x[UMBProf(x) ÙWins(x, NobelPrize)] Ù
¬$y,z[y ¹ z ÙUMBProf(y) ÙUMBProf(z) Ù

Wins(y, NobelPrize) ÙWins(z, NobelPrize)]
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Rules of Inference for Quantified Statements 
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Universal instantiation∀x P(x)__________
∴ P(c) if c ∈ U

Universal generalization

∃x P(x)________________________
∴ P(c) for some element c ∈ U

Existential instantiation

P(c) for some element c ∈ U_______________________
∴ ∃x P(x) 

Existential generalization

P(c) for an arbitrary c ∈ U_____________________
∴ ∀x P(x)
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Rules of Inference for Quantified Statements 

• Example:
• Every UMB student is a genius. 
• George is a UMB student.
• Therefore, George is a genius.

• The following steps are used in the argument:
U(x): “x is a UMB student.”
G(x): “x is a genius.”

Step Reason
1. ∀x U(x) → G(x) Hypothesis
2. U(George) → G(George) Universal instantiation using (1)
3. U(George) Hypothesis
4. G(George) Modus ponens using (2) and (3)
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Proving Theorems
Direct proof:
• An implication p®q can be proved by showing that if p is true, then q 

is also true.

• Example: Give a direct proof of the theorem 
“If n is odd, then n2 is odd.”

• Idea: Assume that the hypothesis of this implication is true (n is odd). 
Then use rules of inference and known theorems to show that q must 
also be true (n2 is odd).
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Proving Theorems
n is odd.

Then n = 2k + 1, where k is an integer.

Consequently, n2 = (2k + 1)2.
= 4k2 + 4k + 1
= 2(2k2 + 2k) + 1

Since n2 can be written in the form of 2K + 1, it is odd.
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Proving Theorems
Indirect proof:
• An implication p®q is equivalent to its contra-positive ¬q ® ¬p. Therefore, we 

can prove p®q by showing that whenever q is false, then p is also false.

• Example: Give an indirect proof of the theorem 
“If 3n + 2 is odd, then n is odd.”

• Idea: Assume that the conclusion of this implication is false (n is even). Then use 
rules of inference and known theorems to show that p must also be false (3n + 2 
is even).
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Proving Theorems
n is even.

Then n = 2k, where k is an integer.

It follows that: 3n + 2 = 3(2k) + 2 
= 6k + 2
= 2(3k + 1)

Therefore, 3n + 2 is even.

We have shown that the contrapositive of the implication is true, so the 
implication itself is also true (If 3n + 2 is odd, then n is odd). 
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Proving Theorems
Proof by cases
• A proof by cases must cover all possible cases that arise in a theorem.

• Example: For every positive integer n, n(n + 1) is even.

• Idea: Let us first show that the product of an even number m and an odd number n is 
always even:
m = 2k
n = 2p + 1
mn = 2k (2p + 1) = 4kp + 2k
mn = 2(2kp + k)

• Since k and p are integers, (2kp + k) is an integer as well, and we have shown that mn is 
even. 
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Proving by Cases
• The remainder of the proof becomes easy if we separately consider each of the two main 

situations that can occur:

• Case I: n is even.
• Then n(n + 1) means that we multiply an even number with an odd one. As shown above, the 

result must be even.

• Case II: n is odd.
• Then n(n + 1) means that we multiply an odd number with an even one. As shown above, the 

result must be even.

• Since there are no other cases, we have proven that n(n + 1) is always even.
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Summary of Proofs (Theorem)
• Direct proof
• Indirect proof
• Prove by cases
• Proof by contradiction
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• A direct proof of 𝑝 → 𝑞 is true by showing 
that if p is true, then q must also be true, 
so that the combination p true and q false 
never occurs. 
Ø First step: assuming that 𝑝 is true
Ø Second step: showing that 𝑞 is also 

true
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