CS220: Applied Discrete Mathematics

Summer 2022
Instructor: Bang Tran

About this course

- Textbook

Discrete Mathematics and Its Applications, by Kenneth H. Rosen, WCB/McGraw-Hill, 2019 (8th Edition).

- Course webpage:
https://cs.umb.edu/~bangtah/teaching/cs220 summer22/
- Gradescope: For homework \& exam submissions! https://www.gradescope.com/courses/367617
- Piazza: For discussing outside of the class

Course staff

- Instructor: Bang Tran (Ben/Benzie/Bang)

Email: bang.tran001@umb.edu
Office hours: \quad 10:30 AM - 12:30 PM (Tuesday \& Thursday) via Zoom

- Tutor: Kleopatra Gjini (Kleo)

Email: Kleopatra.Gjini001@umb.edu
Office hours: \quad 1:30 PM - 2:30 PM (Wednesday) via BlackBoard

- SI: TBD

Email: TBD
Office hours: TBD

Evaluations

- Attendances (20\%)
- Fill an online forms (must have attendance code)
- Two sections mean two form (must choose the correct form)
- Homework (50\%)
- 7 assignments
- The $8^{\text {th }}$ homework for make-up grade
- Submit to gradescope
- Exam (30\%)
- August 24, 2022 (Time: TBD)

$95 \leq P$	A
$90 \leq P<95$	$\mathrm{~A}-$
$85 \leq P<90$	$\mathrm{~B}+$
$75 \leq P<85$	B
$70 \leq P<75$	$\mathrm{~B}-$
$65 \leq P<70$	$\mathrm{C}+$
$55 \leq P<65$	C
$50 \leq P<55$	$\mathrm{C}-$
$45 \leq P<50$	$\mathrm{D}+$
$40 \leq P<45$	D
$35 \leq P<40$	$\mathrm{D}-$
$P<35$	F

4
Applied Discrete Mathematics @ Class \#1 - Logic, Proofs, Boolean Algebra
UMass
Boston
-

Logic and Proofs

Chapter 1 in the textbook

Logic in computer science

- Crucial for mathematical reasoning
- Used for designing electronic circuitry
- Logic is a system based on propositions.
- A proposition is a statement that is either true or false (not both)
- Corresponds to 1 and 0 in digital circuits

Propositional Logic

- A proposition is a statement that is either true or false.
- Examples of propositions:
- Two plus two is four.
- Toronto is the capital of Canada.
- There is an infinite number of primes.
- Not propositions:
- What time is it?
- Have a nice day!
- A proposition's truth value is a value indicating whether the proposition is true or false.

The Statement/Proposition Game

"Elephants are bigger than mice."

- Is this a statement?
- Is this a proposition?
- What is the truth value of the proposition?
true

$520<111$

- Is this a statement? Yes
- Is this a proposition? Yes
- What is the truth value of the proposition? false
$\mathrm{y}<210$
- Is this a statement?
- Is this a proposition?
- What is the truth value of the proposition?

Its truth value depends on the value of y, but this value is not specified. We call this type of statement a propositional function or open sentence.

The Statement/Proposition Game

"Today is January 23 and $99<5$."

- Is this a statement ? Yes
- Is this a proposition? Yes
- What is the truth value of the proposition? false

"Please do not fall asleep."

- Is this a statement?
- Is this a proposition?
- What is the truth value of the proposition? Doesn't exits
"If elephants were red, they could hide in cherry trees"
- Is this a statement?
- Is this a proposition?

Yes

- What is the truth value of the proposition? Probably false

The Statement/Proposition Game

```
"x<y if and only if y > x." Yes
- Is this a statement? Yes
- Is this a proposition? true
- What is the truth value of the proposition?
```


Combining Propositions

- As we have seen in the previous examples, one or more propositions can be combined to form a single compound proposition.
- We formalize this by denoting propositions with letters such as P, Q, R, S, and introducing several logical operators.

Logical Operators (Connectives)

- We will examine the following logical operators:
- Negation
- Conjunction
(NOT)
ᄀ
- Disjunction
(OR)
\wedge
- Exclusive or
(XOR)
v
- Implication
(if - then)
\oplus
- Biconditional
(if and only if)
- Truth tables can be used to show how these operators can combine propositions to compound propositions.

12

Negation (NOT)

- Unary Operator, Symbol: \neg

P	$\neg P$
true	false
false	true

Conjunction (AND)

- Binary Operator, Symbol: ^

P	Q	$\mathrm{P} \wedge \mathrm{Q}$
true	true	true
true	false	false
false	true	false
false	false	false

Disjunction (OR)

- Binary Operator, Symbol: v

P	Q	PvQ
true	true	true
true	false	true
false	true	true
false	false	false

Exclusive Or (XOR)

- Binary Operator, Symbol: \oplus

P	Q	$P \oplus Q$
true	true	false
true	false	true
false	true	true
false	false	false

Implication (if - then)

- Binary Operator, Symbol: \rightarrow

P	Q	$P \rightarrow Q$
true	true	true
true	false	false
false	true	true
false	false	true

17

Biconditional (if and only if)

- Binary Operator, Symbol: \leftrightarrow

P	Q	$P \leftrightarrow Q$
true	true	true
true	false	false
false	true	false
false	false	true

Proposition exercises

- Given following statements:
- $P=I$ finish writing my computer program before the lunch
- $Q=I$ shall play tennis in the afternoon
- $R=$ The sun is shining
- $S=$ The humidity is low

> P is necessary for $\mathrm{Q}: \quad Q \rightarrow P$
> P is sufficient for $\mathrm{Q}: P \rightarrow Q$

- Translate these sentences into proposition logic:
- If the sun is shining, I shall play tennis this afternoon.

$$
R \rightarrow Q
$$

- Finishing the writing of my computer program before lunch is necessary for my playing tennis this afternoon.

$$
Q \rightarrow P
$$

- Low humidity and sunshine are sufficient for me to play tennis this afternoon.

$$
S \wedge R \rightarrow Q
$$

,

Equivalence

- The two formulas P and Q are logically equivalent iff the truth conditions of P are the same as the the truth conditions of Q
- Notation: $p \equiv q$
- Example: $\neg(P \wedge Q) \equiv(\neg P \vee \neg Q)$

P	Q	$\neg(P \wedge Q)$	$(\neg P) \vee(\neg Q)$	$\neg(P \wedge Q) \leftrightarrow(\neg P) \vee(\neg Q)$
true	true	false	false	$?$
true	false	true	true	$?$
false	true	true	true	$?$
false	false	true	true	$?$

20

Equivalence

- Is $(P \wedge Q) \equiv \neg(P \vee Q)$?
- Answer: No

P	Q	$(P \wedge Q)$	$\neg(P \vee Q)$
true	true	true	false
true	false	false	true
false	true	false	true
false	false	false	true

Logical equivalances

- Identity laws
- $p \wedge$ true $\equiv p$
- $p \vee$ false $\equiv p$
- Domination laws
- $p \wedge$ false \equiv false
- $p \vee$ true \equiv true
- Idempotent laws
- $p \wedge p \equiv p$
- $p \vee p \equiv p$
- Commutative laws
- $p \wedge q \equiv q \wedge p$
- $p \vee q \equiv q \vee p$
- Double negation law
- $\neg(\neg p) \equiv p$
- Associate laws
- $(p \vee q) \vee r \equiv p \vee(q \vee r)$
- $(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$
- Distributive laws
- $p \vee(q \wedge r) \equiv(p \vee r) \wedge(p \vee r)$
- $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
- De Morgan's laws
- $\neg(p \wedge q) \equiv \neg q \vee \neg p$
- $\neg(p \vee q) \equiv \neg p \wedge \neg q$
- Absorption laws
- $p \vee(p \wedge q) \equiv p$
- $p \wedge(p \vee q) \equiv p$
- Negation laws
- $p \vee \neg \mathrm{p} \equiv$ true
- $p \wedge \neg p \equiv$ false

Tautologies and Contradictions

- A tautology is a statement that is always true.
- Examples:
- $R \vee(\neg R)$
- $\neg(P \wedge Q) \leftrightarrow(\neg P) \vee(\neg Q)$
- If $S \rightarrow T$ is a tautology, we write $S \Rightarrow T$.
- If $S \leftrightarrow T$ is a tautology, we write $S \Leftrightarrow T$.

Tautologies and Contradictions

- A contradiction is a statement that is always false.
- Examples:
- $R \wedge(\neg R)$
- $\neg(\neg(P \wedge Q) \leftrightarrow(\neg P) \vee(\neg Q))$
- The negation of any tautology is a contradiction, and
- The negation of any contradiction is a tautology.

Exercises

1. Show that $(P \vee \neg \mathrm{P})$ is a tautology
2. Show that $(P \wedge \neg P)$ is a contradiction
3. Show that $\neg(P \vee \neg Q) \Rightarrow \neg P$
4. Show that $(P \wedge(P \rightarrow Q)) \Rightarrow Q$
5. Determine whether $(P \oplus Q) \oplus P$ is a tautology, contradiction or neither
6. Determine whether $(P \oplus Q) \vee(P \oplus \neg Q)$ is a tautology, contradiction or neither

Mathematical Reasoning

- We need mathematical reasoning to
- Determine whether a mathematical argument is correct or incorrect and
- Construct mathematical arguments.
- Mathematical reasoning is not only important for conducting proofs and program verification, but also for artificial intelligence systems (drawing inferences).

Terminology

- An axiom is a basic assumption about mathematical structures that needs no proof.
- We can use a proof to demonstrate that a particular statement is true. A proof consists of a sequence of statements that form an argument.
- The steps that connect the statements in such a sequence are the rules of inference.
- Cases of incorrect reasoning are called fallacies.
- A theorem is a statement that can be shown to be true.

Terminology

- A lemma is a simple theorem used as an intermediate result in the proof of another theorem.
- A corollary is a proposition that follows directly from a theorem that has been proved.
- A conjecture is a statement whose truth value is unknown. Once it is proven, it becomes a theorem.
- Rules of inference provide the justification of the steps used in a proof.
- One important rule is called modus ponens or the law of detachment. It is based on the tautology $(p \wedge(p \rightarrow q)) \rightarrow q$. We write it in the following way:

$$
\begin{aligned}
& \mathrm{p} \\
& \mathrm{p} \rightarrow \mathrm{q} \\
& \frac{\therefore \mathrm{q}}{}
\end{aligned}
$$

Rules of Inference

- The general form of a rule of inference is:

$$
\begin{aligned}
& \mathrm{p}_{1} \\
& \mathrm{p}_{2} \\
& \cdot \\
& \cdot \\
& \cdot \\
& \mathrm{p}_{\mathrm{n}} \\
& \hline \therefore \mathrm{q}
\end{aligned}
$$

The rule states that if p_{1} and p_{2} and \ldots and p_{n} are all true, then q is true as well.

These rules of inference can be used in any mathematical argument and do not require any proof.

Rules of Inference

p

$p \rightarrow q$	Modus ponens	p	Addition
$\therefore \mathrm{q}$		$\therefore \mathrm{pVq}$	
$\neg \mathrm{q}$	Modus tollens	$p \wedge q$	Simplification
$p \rightarrow q$			
$\therefore \neg \mathrm{p}$		$\therefore \mathrm{p}$	
	Hypothetical syllogism	p	Conjunction
$p \rightarrow q$		q	
$q \rightarrow r$		$\therefore \mathrm{p} \wedge \mathrm{q}$	
$\therefore \mathrm{p} \rightarrow \mathrm{r}$			
$p \vee q$	Disjunctive syllogism	$p \vee q$	Resolution
$\neg \mathrm{p}$		$\neg \mathrm{p} \vee \mathrm{r}$	
$\therefore \mathrm{q}$		$\therefore \mathrm{qV} \mathrm{r}$	

30
Applied Discrete Mathematics @ Class \#1 - Logic, Proofs, Boolean Algebra

Arguments

- Just like a rule of inference, an argument consists of one or more hypotheses and a conclusion.
- We say that an argument is valid, if whenever all its hypotheses are true, its conclusion is also true.
- However, if any hypothesis is false, even a valid argument can lead to an incorrect conclusion.

Arguments

- Example:
"If 101 is divisible by 3 , then 101^{2} is divisible by 9.101 is divisible by 3 . Consequently, 101^{2} is divisible by $9 . "$
- Although the argument is valid, its conclusion is incorrect, because one of the hypotheses is false ("101 is divisible by 3.")
- Which rule was ued ?
$P=$ "101 is divisible by $3 . "$
$Q=" 101^{2}$ is divisible by $9 . "$
$\frac{\mathrm{P}}{\mathrm{P} \rightarrow \mathrm{Q}} \quad$ Modus ponens

Arguments

- Another example:

- "If it rains today, then we will not have a barbeque today. If we do not have a barbeque today, then we will have a barbeque tomorrow. Therefore, if it rains today, then we will have a barbeque tomorrow."
- This is a valid argument: If its hypotheses are true, then its conclusion is also true.
- Let us formalize the previous argument:
- p : "It is raining today."
- q: "We will not have a barbecue today."
- r: "We will have a barbecue tomorrow."
$p \rightarrow q$
Hypothetical syllogism
- So the argument is of the following form:

Arguments

- Another example:
- Gary is either intelligent or a good actor.
- If Gary is intelligent, then he can count from 1 to 10.
- Gary can only count from 1 to 2.
- Therefore, Gary is a good actor.
- Let us formalize the argument as:
- I: "Gary is intelligent."
- A. "Gary is a good actor."
- C: "Gary can count from 1 to 10 ."
Step

1. $\neg C$
2. $I \rightarrow C$
3. $A I \vee I$
4. $A \vee I$
5. A

Reason
Hypothesis
Hypothesis
Modus Tollens using (1) and (2)
Hypothesis
Disjunctive Syllogism using (3) and (4)

- Conclusion: A ("Gary is a good actor.")

Arguments

- Yet another example:
- If you listen to me, you will pass CS 220.
- You passed CS 220.
- Therefore, you have listened to me.
- Is this argument valid?
- No, it assumes $((p \rightarrow q) \wedge q) \rightarrow p$.
- This statement is not a tautology. It is false if p is false and q is true.

35

Predicate Calculus

Chapter 1.4 in the textbook

36

Universal Quantification

- Let $P(x)$ be a propositional function.
- Universally quantified sentence:

For all x in the universe of discourse $P(x)$ is true.

- Using the universal quantifier \forall :
$\forall x P(x) \quad$ "for all $x P(x)$ " or "for every $x P(x)$ "
- (Note: $\forall \mathrm{x} P(x)$ is either true or false, so it is a proposition, not a propositional function.)

Universal Quantification

- Example:
$S(x)$: x is a UMB student.
$\mathrm{G}(\mathrm{x}): \mathrm{x}$ is a genius.
- What does $\forall x(S(x) \rightarrow G(x))$ mean ?
"If x is a UMB student, then x is a genius."
or
"All UMB students are geniuses."

Existential Quantification

- Existentially quantified sentence:

There exists an x in the universe of discourse for which $\mathrm{P}(\mathrm{x})$ is true.

- Using the existential quantifier \exists :
$\exists x \mathrm{P}(\mathrm{x}) \quad$ "There is an x such that $\mathrm{P}(\mathrm{x})$."
"There is at least one x such that $\mathrm{P}(\mathrm{x})$."
- (Note: $\exists \mathrm{xP}(\mathrm{x})$ is either true or false, so it is a proposition, but no propositional function.)

Existential Quantification

- Example:
$P(x)$: x is a UMB professor.
$\mathrm{G}(\mathrm{x}): \mathrm{x}$ is a genius.
- What does $\exists x(P(x) \wedge G(x))$ mean ?
"There is an x such that x is a UMB professor and x is a genius."
or
"At least one UMB professor is a genius."

Quantification

- Another example:

Let the universe of discourse be the real numbers.

- What does $\forall x \exists y(x+y=320)$ mean ?
"For every x there exists a y so that $x+y=320 . "$

Is it true?
yes

Is it true for the natural numbers? no

Disproof by Counterexample

- A counterexample to $\forall x \mathrm{P}(\mathrm{x})$ is an object c so that $\mathrm{P}(\mathrm{c})$ is false.
- Statements such as $\forall x(P(x) \rightarrow Q(x))$ can be disproved by simply providing a counterexample.

Statement: "All birds can fly."
Disproved by counterexample: Penguin.

Negation

- $\neg(\forall \mathrm{xP}(\mathrm{x}))$ is logically equivalent to $\exists \mathrm{x}(\neg \mathrm{P}(\mathrm{x}))$.
- $\neg(\exists \mathrm{x} P(\mathrm{x}))$ is logically equivalent to $\forall \mathrm{x}(\neg \mathrm{P}(\mathrm{x}))$.

Quantification

- Introducing the universal quantifier \forall and the existential quantifier \exists facilitates the translation of world knowledge into predicate calculus.
- Examples:
- Paul beats up all professors who fail him.

$$
\forall x([\operatorname{Professor}(\mathrm{x}) \wedge \text { Fails }(\mathrm{x}, \text { Paul })] \rightarrow \text { BeatsUp(Paul, } \mathrm{x}))
$$

- All computer scientists are either rich or crazy, but not both.
$\forall x(\operatorname{CS}(x) \rightarrow[\operatorname{Rich}(x) \wedge \neg \operatorname{Crazy}(\mathrm{x})] \vee[\neg \operatorname{Rich}(\mathrm{x}) \wedge \operatorname{Crazy}(\mathrm{x})])$
- Or, using XOR:
$\forall x(\operatorname{CS}(x) \rightarrow[\operatorname{Rich}(x) \oplus \operatorname{Crazy}(\mathrm{x})])$

More Practice for Predicate Logic

- Important points:
- Define propositional functions in a useful and reusable manner, just like functions in a computer program.
- Make sure your formalized statement evaluates to "true" in the context of the original statement and evaluates to "false" whenever the original statement is violated.
- More Examples:
- Jenny likes all movies that Peter likes (and possibly more). $\forall x[\operatorname{Movie}(x) \wedge \operatorname{Likes}($ Peter, $x) \rightarrow$ Likes (Jenny, x$)]$
- There is exactly one UMass professor who won a Nobel prize $\exists x[\operatorname{UMBProf}(\mathrm{x}) \wedge$ Wins $(\mathrm{x}$, NobelPrize) $] \wedge$
$\neg \exists y, z[y \neq z \wedge$ UMBProf $(y) \wedge$ UMBProf $(z) \wedge$
Wins(y, NobelPrize) \wedge Wins(z, NobelPrize)]

Rules of Inference for Quantified Statements
 $\forall x P(x)$
 $\therefore P(c)$ if $c \in U$
 Universal instantiation

$P(c)$ for an arbitrary $c \in U$
$\therefore \forall \mathrm{xP}(\mathrm{x})$
$\exists x P(x)$
$\therefore \mathrm{P}(\mathrm{c})$ for some element $\mathrm{c} \in \mathrm{U}$
$P(c)$ for some element $c \in U$
$\therefore \exists \mathrm{xP}(\mathrm{x})$

Universal generalization

Existential instantiation

Existential generalization

Rules of Inference for Quantified Statements

- Example:
- Every UMB student is a genius.
- George is a UMB student.
- Therefore, George is a genius.
- The following steps are used in the argument:
$U(x)$: " x is a UMB student."
$G(x)$: " x is a genius."

Step

1. $\forall x U(x) \rightarrow G(x)$
2. U(George) \rightarrow G(George)
3. U(George)
4. G(George)

Reason

Hypothesis
Universal instantiation using (1)
Hypothesis
Modus ponens using (2) and (3)

Proving Theorems

Direct proof:

- An implication $p \rightarrow q$ can be proved by showing that if p is true, then q is also true.
- Example: Give a direct proof of the theorem "If n is odd, then n^{2} is odd."
- Idea: Assume that the hypothesis of this implication is true (n is odd). Then use rules of inference and known theorems to show that q must also be true (n^{2} is odd).

Proving Theorems

n is odd.

Then $n=2 k+1$, where k is an integer.
Consequently, $n^{2}=(2 k+1)^{2}$.

$$
\begin{aligned}
& =4 k^{2}+4 k+1 \\
& =2\left(2 k^{2}+2 k\right)+1
\end{aligned}
$$

Since n^{2} can be written in the form of $2 K+1$, it is odd.

Proving Theorems

Indirect proof:

- An implication $p \rightarrow q$ is equivalent to its contra-positive $\neg q \rightarrow \neg p$. Therefore, we can prove $p \rightarrow q$ by showing that whenever q is false, then p is also false.
- Example: Give an indirect proof of the theorem
"If $3 n+2$ is odd, then n is odd."
- Idea: Assume that the conclusion of this implication is false (n is even). Then use rules of inference and known theorems to show that p must also be false ($3 n+2$ is even).

Proving Theorems

n is even.
Then $\mathrm{n}=2 \mathrm{k}$, where k is an integer.
It follows that: $3 n+2=3(2 k)+2$

$$
\begin{aligned}
& =6 k+2 \\
& =2(3 k+1)
\end{aligned}
$$

Therefore, $3 n+2$ is even.
We have shown that the contrapositive of the implication is true, so the implication itself is also true (If $3 n+2$ is odd, then n is odd).

Proving Theorems

Proof by cases

- A proof by cases must cover all possible cases that arise in a theorem.
- Example: For every positive integer $n, n(n+1)$ is even.
- Idea: Let us first show that the product of an even number m and an odd number n is always even:
$m=2 k$
$n=2 p+1$
$m n=2 k(2 p+1)=4 k p+2 k$
$\mathrm{mn}=2(2 \mathrm{kp}+\mathrm{k})$
- Since k and p are integers, $(2 \mathrm{kp}+\mathrm{k})$ is an integer as well, and we have shown that mn is even.

52 Applied Discrete Mathematics @ Class \#1-Logic, Proofs, Boolean Algebra

Proving by Cases

- The remainder of the proof becomes easy if we separately consider each of the two main situations that can occur:
- Case $\mathrm{I}: \mathrm{n}$ is even.
- Then $n(n+1)$ means that we multiply an even number with an odd one. As shown above, the result must be even.
- Case II: n is odd.
- Then $n(n+1)$ means that we multiply an odd number with an even one. As shown above, the result must be even.
- Since there are no other cases, we have proven that $n(n+1)$ is always even.

Summary of Proofs (Theorem)

- Direct proof
- Indirect proof
- Prove by cases
- Proof by contradiction
- A direct proof of $p \rightarrow q$ is true by showing that if p is true, then q must also be true, so that the combination p true and q false never occurs.

First step: assuming that p is true
Second step: showing that q is also true

