CS220: Applied Discrete Mathematics

Summer 2022
Instructor: Bang Tran

1

Summary of Proofs (Theorem)

- Direct proof
- Indirect proof
- Prove by cases
- Proof by contradiction
- A direct proof of $p \rightarrow q$ is true by showing that if p is true, then q must also be true, so that the combination p true and q false never occurs.
$>$ First step: assuming that p is true
$>$ Second step: showing that q is also true

Summary of Proofs (Theorem)

- Direct proof
- Indirect proof
- Prove by cases
- Proof by contradiction

An implication $p \rightarrow q$ is equivalent to its contrapositive $\neg \mathrm{q} \rightarrow \neg \mathrm{p}$.
Therefore, we can prove $p \rightarrow q$ by showing that whenever q is false, then p is also false.
$>$ Step 1: Introduce $\neg q$ as a premise
$>$ Step 2: attempt to derive $\neg \mathrm{p}$
Is also called proof by contraposition

3

Summary of Proofs (Theorem)

- Direct proof
- Indirect proof
- Prove by cases
- Proof by contradiction

A proof by cases must cover all possible cases that arise in a theorem.

To prove $\left(p_{1} \vee p_{2} \vee \cdots \vee p_{n}\right) \rightarrow q$ we prove that

$$
\left(p_{1} \rightarrow q\right) \wedge\left(p_{2} \rightarrow q\right) \wedge \cdots \vee\left(p_{n} \rightarrow q\right)
$$

Summary of Proofs (Theorem)

- Direct proof
- Indirect proof
- Prove by cases
- Proof by contradiction \qquad
Because the statement $r \wedge \neg r$ is a contradiction whenever r is a proposition, we can prove that p is true if we can show that $\neg p \rightarrow(r \wedge \neg r)$ is true for some proposition r
> Step 1: Introduce $\neg p$ as a premise
$>$ Step 2: attempt to derive a contradiction $\neg r \wedge r$

5

Boolean Algebra

Chapter 12 in the textbook

6

Boolean Algebra

- Boolean algebra provides the operations and the rules for working with the set $\{\mathbf{0}, \mathbf{1}\}$.
-These are the rules that underlie electronic circuits, and the methods we will discuss are fundamental to VLSI design.
-We are going to focus on 3 operations:
- Boolean complementation,
- Boolean sum, and
- Boolean product

Boolean Operations

- The complement is denoted by a bar (on the slides, we will use a minus sign). It is defined by

$$
\overline{0}=1 \text { and } \overline{1}=0 .
$$

- The Boolean sum, denoted by + or by OR, has the following values:

$$
1+1=1, \quad 1+0=1, \quad 0+1=1, \quad 0+0=0
$$

- The Boolean product, denoted by - or by AND, has the following values:

$$
1 \cdot 1=1, \quad 1 \cdot 0=0, \quad 0 \cdot 1=0, \quad 0 \cdot 0=0
$$

Boolean Functions and Expressions

- Definition: Let $\mathbb{B}=\{0,1\}$. The variable x is called a Boolean variable if it assumes values only from B.
- A function from \mathbb{B}^{n}, the set $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in B, 1 \leq i \leq n\right\}$, to \mathbb{B} is called a Boolean function of degree \mathbf{n}.
- Boolean functions can be represented using expressions made up from Boolean variables and Boolean operations.

Boolean Functions and Expressions

- The Boolean expressions in the variables $x_{1}, x_{2}, \ldots, x_{n}$ are defined recursively as follows:
- $0,1, x_{1}, x_{2}, \ldots, x_{n}$ are Boolean expressions.
- If E_{1} and E_{2} are Boolean expressions, then $\overline{E_{1}},\left(E_{1} E_{2}\right)$, and $\left(E_{1}+E_{2}\right)$ are Boolean expressions.
- Each Boolean expression represents a Boolean function. The values of this function are obtained by substituting 0 and 1 for the variables in the expression.

Boolean Functions and Expressions

- For example, we can create Boolean expression in the variables x, y, and z using the "building blocks" $0,1, x, y$, and z, and the construction rules:
- Since x and y are Boolean expressions, so is $x y$.
- Since z is a Boolean expression, so is \bar{z}.
- Since $x y$ and \bar{z} are Boolean expressions, so is $x y+\bar{z}$.
- ... and so on...

Boolean Functions and Expressions

- Example: Give a Boolean expression for the Boolean function $F(x, y)$ as defined by the following table:

x	y	$F(x, y)$
0	0	0
0	1	1
1	0	0
1	1	0

Possible solution: $F(x, y)=\bar{x} \cdot y$

Boolean Functions and Expressions

- Another Example:

x	y	z	$F(x, y, z)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Possible solution II:

$$
F(x, y, z)=(\overline{x z}) \bar{y}
$$

Possible solution I:

$$
F(x, y, z)=\overline{x z+y}
$$

Boolean Functions and Expressions

- There is a simple method for deriving a Boolean expression for a function that is defined by a table. This method is based on minterms.
- Definition: A literal is a Boolean variable or its complement. A minterm of the Boolean variables $x_{1}, x_{2}, \ldots, x_{n}$ is a Boolean product $y_{1} y_{2} \ldots y_{n}$, where $y_{i}=x_{\mathrm{i}}$ or $y_{i}=\overline{x_{i}}$.
- Hence, a minterm is a product of n literals, with one literal for each variable.

Boolean Functions and Expressions

- Consider $F(x, y, z)$ again:

x	y	z	$F(x, y, z)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

$F(x, y, z)=1$ if and only if:
$x=y=z=0$ or
$x=y=0, z=1$ or
$x=1, y=z=0$

Therefore,

$$
F(x, y, z)=\bar{x} \bar{y} \bar{z}+\bar{x} \bar{y} z+x \bar{y} \bar{z}
$$

Boolean Functions and Expressions

- Definition: The Boolean functions F and G of n variables are equal if and only if $F\left(b_{1}, b_{2}, \ldots, b_{n}\right)=G\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ whenever $b_{1}, b_{2}, \ldots, b_{n}$ belong to \mathbb{B}.
- Two different Boolean expressions that represent the same function are called equivalent.
- For example, the Boolean expressions $x y, x y+0$, and $x y \cdot 1$ are equivalent.

Boolean Functions and Expressions

- The complement of the Boolean function F is the function \bar{F}, where $\bar{F}\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\overline{F\left(b_{1}, b_{2}, \ldots, b_{n}\right)}$.
- Let F and G be Boolean functions of degree n. The Boolean sum $\boldsymbol{F}+$ \boldsymbol{G} and Boolean product $\boldsymbol{F G}$ are then defined by

$$
\begin{aligned}
& (F+G)\left(b_{1}, b_{2}, \ldots, b_{n}\right)=F\left(b_{1}, b_{2}, \ldots, b_{n}\right)+G\left(b_{1}, b_{2}, \ldots, b_{n}\right) \\
& (F G)\left(b_{1}, b_{2}, \ldots, b_{n}\right)=F\left(b_{1}, b_{2}, \ldots, b_{n}\right) \cdot G\left(b_{1}, b_{2}, \ldots, b_{n}\right)
\end{aligned}
$$

Boolean Functions and Expressions

- Question: How many different Boolean functions of degree 1 are there?
- Solution: There are four of them, F_{1}, F_{2}, F_{3}, and F_{4} :

x	F_{1}	F_{2}	F_{3}	F_{4}
0	0	0	1	1
1	0	1	0	1

Boolean Functions and Expressions

-Question: How many different Boolean functions of degree 2 are there?
-Solution: There are 16 of them, $F_{1}, F_{2}, \ldots, F_{16}$:

x	y	F_{1}	$\mathrm{~F}_{2}$	$\mathrm{~F}_{3}$	$\mathrm{~F}_{4}$	$\mathrm{~F}_{5}$	$\mathrm{~F}_{6}$	$\mathrm{~F}_{7}$	$\mathrm{~F}_{8}$	$\mathrm{~F}_{9}$	$\mathrm{~F}_{10}$	$\mathrm{~F}_{11}$	$\mathrm{~F}_{12}$	$\mathrm{~F}_{13}$	$\mathrm{~F}_{14}$	$\mathrm{~F}_{15}$	$\mathrm{~F}_{16}$
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Boolean Functions and Expressions

- Question: How many different Boolean functions of degree n are there?

- Solution:

- There are 2^{n} different n-tuples of $0 s$ and $1 s$.
- A Boolean function is an assignment of 0 or 1 to each of these 2^{n} different n tuples.
- Therefore, there are $2^{2^{n}}$ different Boolean functions.

Identities

There are useful identities of Boolean expressions that can help us to transform an expression A into an equivalent expression B, e.g.:

Identity Name	AND Form	OR Form
Identity Law	$1 x=x$	$0+x=x$
Null (or Dominance) Law	$0 x=0$	$1+x=1$
Idempotent Law	$x x=x$	$x+x=x$
Inverse Law	$x \bar{x}=0$	$x+\bar{x}=1$
Commutative Law	$x y=y x$	$x+y=y+x$
Associative Law	$(x y) z=x(y z)$	$(x+y)+z=x+(y+z)$
Distributive Law	$x+y z=(x+y)(x+z)$	$x(y+z)=x y+x z$
Absorption Law	$x(x+y)=x$	$x+x y=x$
DeMorgan's Law	$(\overline{x y})=\bar{x}+\bar{y}$	$(\overline{x+y})=\overline{x y}$
Double Complement Law	$\quad \overline{\bar{x}}=x$	

Definition of a Boolean Algebra

- All the properties of Boolean functions and expressions that we have discovered also apply to other mathematical structures such as propositions and sets and the operations defined on them.
- If we can show that a particular structure is a Boolean algebra, then we know that all results established about Boolean algebras apply to this structure.
- For this purpose, we need an abstract definition of a Boolean algebra.

Definition of a Boolean Algebra

Definition: A Boolean algebra is a set B with two binary operations \vee and \wedge, elements 0 and 1 , and a unary operation - such that the following properties hold for all x, y, and z in B :

$$
\begin{array}{ll}
x \vee 0=x \text { and } x \wedge 1=x & \text { (identity laws) } \\
x \vee \bar{x}=1 \text { and } x \wedge \bar{x}=0 & \text { (domination laws) } \\
(x \vee y) \vee z=x \vee(y \vee z) \text { and } & \\
(x \wedge y) \wedge z=x \wedge(y \wedge z) \text { and } & \text { (associative laws) } \\
x \vee y=y \vee x \text { and } x \wedge y=y \wedge x & \text { (commutative laws) } \\
x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z) \text { and } & \\
x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z) & \text { (distributive laws) }
\end{array}
$$

Logic Gates

Electronic circuits consist of so-called gates. There are three basic types of gates:

(a) Inverter

(b) OR gate

(c) AND gate

Logic Gates

- Example: How can we build a circuit that computes the function $x y+\bar{x} y$?

Minimization of Circuits

Chapter 12.4 int the textbook

26

Minimization of Circuits

- The efficiency of a combinational circuit depends on the number and arrangement of its gates.
- We can always use the sum-of-products expansion of a circuit to find a set of logic gates that will implement this circuit. However, the sum-of-products expansion may contain many more terms than are necessary.

Minimization of Circuits

- Reducing the number of gates on a chip can lead to a more reliable circuit and can reduce the cost to produce the chip.
- Minimization makes it possible to fit more circuits on the same chip.
- Minimization reduces the number of inputs to gates in a circuit. The number of inputs to a gate may be limited because of the particular technology used to build logic gates.
- Reduces the time used by a circuit to compute its output.

Karnaugh Maps (K-Maps)

- Special form of a truth table which enables easier pattern recognition
- Pictorial method of simplifying Boolean expressions
- Good for circuit designs with up to 4 variables

Karnaugh Maps (K-Maps)

Truth Table

x	y	$F(x, y)$
0	0	0
0	1	1
1	0	1
1	1	1

F

Karnaugh Maps (K-Maps)

Truth Table

x	y	$F(x, y)$
0	0	0
0	1	0
1	0	1
1	1	1

Karnaugh Maps (K-Maps)

Truth Table

x	y	$F(x, y)$
0	0	0
0	1	1
1	0	1
1	1	1

The vertical group shows that the output is independent to y The horizontal group shows that the ouput is independent to x

$$
F=x+y
$$

Karnaugh Maps (K-Maps)

Truth Table

x	y	$F(x, y)$
0	0	1
0	1	1
1	0	1
1	1	1

The output is independent to all of inputs

$$
F=1
$$

Karnaugh Maps (K-Maps)

Truth Table

x	y	$F(x, y)$
0	0	0
0	1	1
1	0	1
1	1	1

The 1 s in vertical group are always x The 1s horizontal group are always y

$$
F=\bar{x}+\bar{y}
$$

K-Map in three variables

Truth Table

x	y	z	$F(x, y, z)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$F=x+y$

K-Map in three variables Truth Table

x	y	z	$F(x, y, z)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Wrong! A group of 1 s can only contain $2^{\text {n }}$ of 1 s

Correct!

K-Map in three variables

$F=\bar{Z}$

$$
F=x \bar{z}
$$

Grouping rules in K-Maps

- A group must only contains 1s, no 0s
- A group can only be horizontal or vertical, not diagonal
- A group must contain $2^{n}(1,2,4,8$, etc.) of 1 s
- Each group should be as large as possible
- Groups may overlap
- Groups may wrap around a table
- Every 1 must be in at least one group

K-Map in three variables

- Use K-maps to minimize these sum-of-production expansions.
a) $x y \bar{z}+x \bar{y} \bar{z}+\bar{x} y z+\bar{x} \bar{y} \bar{z}$
b) $x \bar{y} z+x \bar{y} \bar{z}+\bar{x} y z+\bar{x} \bar{y} z+\bar{x} \bar{y} \bar{z}$
c) $x y z+x y \bar{z}+x \bar{y} z+x \bar{y} \bar{z}+\bar{x} y z+\bar{x} \bar{y} z+\bar{x} \bar{y} \bar{z}$
d) $x y \bar{z}+x \bar{y} \bar{z}+\bar{x} \bar{y} z+\bar{x} \bar{y} \bar{z}$

K-Map in three variables

a) $x y \bar{z}+x \bar{y} \bar{z}+\bar{x} y z+\bar{x} \bar{y} \bar{z}$

$$
F=x \bar{z}+\bar{y} \bar{z}+\bar{x} y z
$$

K-Map in three variables

b) $x \bar{y} z+x \bar{y} \bar{z}+\bar{x} y z+\bar{x} \bar{y} z+\bar{x} \bar{y} \bar{z}$

$$
F=\bar{y}+\bar{x} z
$$

K-Map in three variables

c) $x y z+x y \bar{z}+x \bar{y} z+x \bar{y} \bar{z}+\bar{x} y z+\bar{x} \bar{y} z+\bar{x} \bar{y} \bar{z}$

$$
F=x+\bar{y}+z
$$

K-Map in three variables

d) $x y \bar{z}+x \bar{y} \bar{z}+\bar{x} \bar{y} z+\bar{x} \bar{y} \bar{z}$

$$
F=x \bar{z}+\bar{y} \bar{z}+\bar{x} \bar{y}
$$

The prime implicant $\bar{y} \bar{z}$ is not essential because the cells it covers are covered by other prime implicants.

$$
F=x \bar{z}+\bar{x} \bar{y}
$$

-

43

K-Map in four variables

K-Map in four variables

45

K-Map in four variables

47

48

49

Sets

Chapter 2.1-2.2 in the textbook

Definition

A set is an unordered collection of objects, called elements or members of the set.
Notation $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
We write $a \in A$ to denote that a is an element of the set A.
The notation $a \notin A$ denotes that a is not an element of the set A

Order of elements is meaningless.
It does not matter how often the same element is listed.

Set Examples

```
    "Standard" Sets:
        Natural numbers \(\mathbb{N}=\{0,1,2,3, \ldots\}\)
        Integers \(\quad \mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}\)
        Positive Integers \(\mathbb{Z}^{+}=\{1,2,3,4, \ldots\}\)
        Real Numbers \(\quad \mathbb{R}=\{47.3,-12, \pi, \ldots\}\)
        Rational Numbers \(\mathbb{Q}=\{1.5,2.6,-3.8,15, \ldots\}\)
        (correct definition will follow)
```


Set Examples

$$
\begin{array}{lr}
A=\emptyset & \text { "empty set/null set" } \\
A=\{z\} & \text { Note: } z \in A, \text { but } z \neq\{z\} \\
A=\{\{b, c\},\{c, x, d\}\} & \\
A=\{\{x, y\}\} & \text { Note: }\{x, y\} \in A, \text { but }\{x, y\} \neq\{\{x, y\}\} \\
A=\{x \mid P(x)\} & \text { "set of all } x \text { such that } P(x) " \\
A=\{x \mid x \in \mathbb{N} \wedge x>7\}=\{8,9,10, \ldots\}
\end{array}
$$

Set Examples

We are now able to define the set of rational numbers \mathbb{Q} :

$$
\mathbb{Q}=\left\{a / b \mid a \in \mathbb{Z} \wedge b \in \mathbb{Z}^{+}\right\} \text {or } \mathbb{Q}=\{a / b \mid a \in \mathbb{Z} \wedge b \in \mathbb{Z} \wedge b \neq 0\}
$$

And how about the set of real numbers \mathbb{R} ?

$$
\mathbb{R}=\{r \mid r \text { is a real number }\}
$$

That is the best we can do.

Set representations

Roster Form

- All elements of the set are listed in-between curly brackets

Statement Form

- The well-defined descriptions of a member of a set
E.g., "The set of even numbers less than 20"

Set Builder Form

- The general form is $A=\{x:$ property $\}$

Venn Diagram

- The simple and best way for visualized representation of sets.

Set Equality

Sets A and B are equal if and only if they contain exactly the same elements.

$$
A=\{9,2,7,-3\}, B=\{7,9,-3,2\}: \quad A=B
$$

Examples:

$$
\begin{array}{cc}
A=\{\text { dog, cat, horse }\}, & A \neq B \\
B=\{\text { cat,horse, squirrel, dog }\} & B=\{\text { cat,horse,dog,dog }\} \quad A=B
\end{array}
$$

Subsets

$A \subseteq B \quad$ "A is a subset of $B "$
$A \subseteq B \quad$ iff every element of A is also an element of B.

We can completely formalize this: $A \subseteq B \Leftrightarrow \forall x(x \in A \rightarrow x \in B)$

$$
\mathrm{A}=\{3,9\}, \mathrm{B}=\{5,9,1,3\}, \quad A \subseteq B ? \quad \text { true }
$$

Examples:

$$
\begin{aligned}
& \mathrm{A}=\{3,3,3,9\}, \mathrm{B}=\{5,9,1,3\}, \quad A \subseteq B ? \quad \text { true } \\
& \mathrm{A}=\{1,2,3\}, \mathrm{B}=\{2,3,4\}, \quad A \subseteq B ?
\end{aligned}
$$

57

Subsets

- Useful rules: $A=B \Leftrightarrow(A \subseteq B) \wedge(B \subseteq A) ;(A \subseteq B) \wedge(B \subseteq C) \Rightarrow A \subseteq C$ (see Venn Diagram)

Subsets

- Useful rules:
$\emptyset \subseteq A$ for any set A
$A \subseteq A$ for any set A

- Proper subsets:

$A \subset B \quad$ " A is a proper subset of B "
$A \subset B \Leftrightarrow \forall x(x \in A \rightarrow x \in B) \wedge \exists x(x \in B \wedge x \notin A)$
or
$A \subset B \Leftrightarrow \forall x(x \in A \rightarrow x \in B) \wedge \neg \forall x(x \in B \rightarrow x \in A)$

Cardinality of Sets

If a set S contains n distinct elements, $n \in \mathbb{N}$, we call S a finite set with cardinality n. We write $|S|=n$ Examples:

$$
\begin{array}{ll}
A=\{\text { Mercedes, BMW, Porsche }\}, & |A|=3 \\
B=\{1,\{2,3\},\{4,5\}, 6\} & |B|=4 \\
C=\emptyset & |C|=0 \\
D=\{x \in \mathbb{N} \mid x \leq 7000\} & |D|=7001 \\
E=\{x \in \mathbb{N} \mid x \geq 7000\} & E \text { is infinite }
\end{array}
$$

The Power Set

- The power set is the set of all subsets of the given set A.
- We write:

$$
\begin{array}{ll}
2^{A} \text { or } \mathcal{P}(A) & \text { "power set of } A^{\prime \prime} \\
2^{A}=\{B \mid B \subseteq A\} & \text { (contains all subsets of } A \text {) }
\end{array}
$$

- Examples:

$$
\begin{aligned}
& A=\{x, y, z\} \\
& 2^{A}=\{\emptyset,\{x\},\{y\},\{z\},\{x, y\},\{x, z\},\{y, z\},\{x, y, z\}\} \\
& A=\emptyset \\
& 2^{A}=\{\varnothing\} \\
& \text { Note }:|A|=0,\left|2^{A}\right|=1
\end{aligned}
$$

The Power Set

- Cardinality of power sets:
$2^{\mathrm{A}} \mid=2^{|\mathrm{A}|}$
Imagine each element in A has an "on/off" switch
Each possible switch configuration in A corresponds to one element in 2^{A}

A	1	2	3	4	5	6	7	8
x	x	x	x	x	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}
y	y	y	\mathbf{y}	\mathbf{y}	y	y	\mathbf{y}	\mathbf{y}
z	z	z	z	z	z	\mathbf{z}	z	\mathbf{z}

For 3 elements in A, there are $2 \times 2 \times 2=8$ elements in 2^{A}

Cartesian Product

- The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is an ordered collection of objects.
- Two ordered n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and
($b_{1}, b_{2}, \ldots, b_{n}$) are equal if and only if they contain exactly the same elements in the same order, i.e., $a_{i}=b_{i}$ for $1 \leq i \leq n$.

The Cartesian product of two sets is defined as:

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\}
$$

Example: $A=\{x, y\}, B=\{a, b, c\}$

$$
A \times B=\{(x, a),(x, b),(x, c),(y, a),(y, b),(y, c)\}
$$

Cartesian Product

- Note that:
- $A \times \emptyset=\varnothing$
- $\varnothing \times A=\varnothing$
- For non-empty sets A and $\mathrm{B}: A \neq B \Leftrightarrow A \times B \neq B \times A$
- $|A \times B|=|A| \cdot|B|$
- The Cartesian product of two or more sets is defined as:

$$
A_{1} \times A_{2} \times \ldots \times A n=\left\{\left(a_{1}, a_{2}, \ldots, \text { an }\right) \mid a_{i} \in A_{i} \text { for } 1 \leq i \leq n\right\}
$$

Partitions

Definition:

A partition of a set S is a collection of disjoint nonempty subsets of S that have S as their union. In other words, the collection of subsets $A i, i \in I$, forms a partition of S if and only if:

1) $A_{i} \neq \emptyset$ for $i \in I$
2) $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$
3) $\cup_{i \in I} A i=S$

Partitions

Examples: Let S be the set $\{u, m, b, r, o, c, k, s\}$. Do the following collections of sets partition S ?

$\{\{m, o, c, k\},\{r, u, b, s\}\}$	yes.
$\{\{c, o, m, b\},\{u, s\},\{r\}\}$	no (k is missing).
$\{\{b, r, o, c, k\},\{m, u, s, t\}\}$	no (t is not in S).
$\{\{u, m, b, r, o, c, k, s\}\}$	yes.
$\{\{b, o, r, k\},\{r, u, m\},\{c, s\}\}$	no (r is in two sets).
$\{\{u, m, b\},\{r, o, c, k, s\}, \emptyset\}$	no (\varnothing is not allowed).

Set Operations

- Union: $\quad A \cup B=\{x \mid x \in A \vee x \in B\}$
E.g., $A=\{a, b\}, B=\{b, c, d\} \quad A \cup B=\{a, b, c, d\}$

- Intersection: $\quad A \cap B=\{x \mid x \in A \wedge x \in B\}$
E.g., $A=\{a, b\}, B=\{b, c, d\} A \cap B=\{b\}$

Set Operations

- Two sets are called disjoint if their intersection is empty, that is, they share no elements:

$$
A \cap B=\varnothing
$$

- The difference between two sets A and B contains exactly those elements of A that are not in B :

$$
A-B=\{x \mid x \in A \wedge x \notin B\}
$$

Example: $A=\{1,2\}, B=\{2,4,6\}, A-B=\{1\}$

Set Operations

- The complement of a set A contains exactly those elements under consideration that are not in A :

$$
\bar{A}=U-A
$$

Example: $U=\mathbb{N}, B=\{250,251,252, \ldots\}$ $\bar{B}=\mathbb{N}-B=\{0,1,2, \ldots, 248,249\}$

\bar{A} is shaded.

- Table 1 in Section 2.2 (8th edition) shows many useful equations for set identities.

Applied Discrete Mathematics @ Class \#2: Boolean Calculus, Sets, Functions

Set Operations

- How can we prove $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$?
- Method 1:

$$
\begin{aligned}
& x \in A \cup(B \cap C) \\
\Leftrightarrow & x \in A \vee x \in(B \cap C) \\
\Leftrightarrow & x \in A \vee(x \in B \wedge x \in C) \\
\Leftrightarrow & (x \in A \vee x \in B) \wedge(x \in A \vee x \in C) \\
& \text { (distributive law for logical expressions) } \\
\Leftrightarrow & x \in(A \cup B) \wedge x \in(A \cup C) \\
\Leftrightarrow & x \in(A \cup B) \cap(A \cup C)
\end{aligned}
$$

Set Operations

Method 2: Membership table
1 means " x is an element of this set", 0 means " x is not an element of this set"

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Set Operations

- Method 3: Apply existing Set identities
- Take-Home message:

Every logical expression can be transformed into an equivalent expression in set theory and vice versa.

Exercises

- Question 1:

Given a set $A=\{x, y, z\}$ and a set $B=\{1,2,3,4\}$, what is the value of $\left|2^{A} \times 2^{B}\right|$?

- Question 2:

Is it true for all sets A and B that $(A \times B) \cap(B \times A)=\varnothing$? Or do A and B have to meet certain conditions?

- Question 3:

For any two sets A and B, if $A-B=\varnothing$ and $B-A=\varnothing$, can we conclude that $A=B$? Why or why not?

Exercises

- Question 1:

Given a set $A=\{x, y, z\}$ and a set $B=\{1,2,3,4\}$, what is the value of $\left|2^{A} \times 2^{B}\right|$?

Answer:
$\left|2^{A} \times 2^{B}\right|=\left|2^{A}\right| \cdot\left|2^{B}\right|=2^{|A|} \cdot 2^{|B|}=8 \cdot 16=128$

Exercises

- Question 2:

Is it true for all sets A and B that $(A \times B) \cap(B \times A)=\varnothing$?
Or do A and B have to meet certain conditions?

Answer:
If A and B share at least one element x, then both $(A \times B)$ and $(B \times A)$ contain the pair (x, x) and thus are not disjoint.
Therefore, for the above equation to be true, it is necessary that $A \cap B=\varnothing$.

Exercises

Question 3:

For any two sets A and B, if $A-B=\varnothing$ and $B-A=\varnothing$, can we conclude that $A=B$? Why or why not?

Answer:

Proof by contradiction: Assume that $\mathrm{A} \neq \mathrm{B}$.
Then there must be either an element x such that $x \in A$ and $x \notin B$ or an element y such that $y \in B$ and $y \notin A$.

If x exists, then $x \in(A-B)$, and thus $A-B \neq \varnothing$.
If y exists, then $y \in(B-A)$, and thus $B-A \neq \varnothing$.
This contradicts the premise $A-B=\varnothing$ and $B-A=\varnothing$, and therefore we can conclude $A=B$.

Functions

Chapter 2.3 in the textbook

78

Functions

- A function f from a set A to a set B is an assignment of exactly one element of B to each element of A.
- We write: $f(a)=b$
if b is the unique element of B assigned by the function f to the element a of A.

If f is a function from A to B , we write $f: A \rightarrow B$
(note: Here, " \rightarrow " has nothing to do with if... then)

Terminologies

If $f: A \rightarrow B$, we say that A is the domain of f and B is the codomain of f.

If $f(a)=b$, we say that b is the image of a and a is the pre-image of b.

The range of $f: A \rightarrow B$ is the set of all images of elements of A.

We say that $f: A \rightarrow B$ maps A to B.

Functions

Let us take a look at the function $f: P \rightarrow C$ with

```
P = {Linda,Max, Kathy,Peter}
    C = {Boston,New York,Hong Kong,Moscow}
```

$f($ Linda $)=$ Moscow
$f($ Max $)=$ Boston
$f($ Kathy $)=$ Hong Kong
$f($ Peter $)=$ New York

Here, the range of f is C.

81

Functions

- Let us re-specify f as follows:

$$
\begin{aligned}
& f(\text { Linda })=\text { Moscow } \\
& f(\text { Max })=\text { Boston } \\
& f(\text { Kathy })=\text { Hong Kong } \\
& f(\text { Peter })=\text { Boston }
\end{aligned}
$$

$$
\text { What is its range? \{Moscow, Boston, Hong Kong\} }
$$

- Is f still a function? yes

Functions

- Other ways to represent f :

x	$f(x)$
Linda	Moscow
Max	Boston
Kathy	Hong Kong
Peter	Boston

Functions

- If the domain of our function f is large, it is convenient to specify f with a formula, e.g.,
$f: \mathbb{R} \rightarrow \mathbb{R}$
$f(x)=2 x$
- This leads to:
$f(1)=2$
$f(3)=6$
$f(-3)=-6$

Functions

- Let f_{1} and f_{2} be functions from A to \mathbb{R}.
- Then the sum and the product of f_{1} and f_{2} are also functions from A to \mathbb{R} defined by:

$$
\begin{aligned}
& \left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x) \\
& \left(f_{1} f_{2}\right)(x)=f_{1}(x) f_{2}(x)
\end{aligned}
$$

Example:

$$
\begin{aligned}
& f_{1}(x)=3 x, f_{2}(x)=x+5 \\
& \left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)=3 x+x+5=4 x+5 \\
& \left(f_{1} f_{2}\right)(x)=f_{1}(x) f_{2}(x)=3 x(x+5)=3 x 2+15 x
\end{aligned}
$$

Functions

- We already know that the range of a function $f: A \rightarrow B$ is the set of all images of elements $a \in A$.
- If we only regard a subset $S \subseteq A$, the set of all images of elements $s \in \mathrm{~S}$ is called the image of S.
- We denote the image of S by $f(S)$:
$f(S)=\{f(s) \mid s \in S\}$

Functions

- Let us look at the following well-known function:
$f($ Linda $)=$ Moscow
$f($ Max $)=$ Boston
$f($ Kathy $)=$ Hong Kong
$f($ Peter $)=$ Boston
- What is the image of $S=\{$ Linda, Max $\}$?
$f(S)=\{$ Moscow, Boston $\}$
- What is the image of $S=\{$ Max, Peter $\}$?
$f(S)=\{$ Boston $\}$

87

Properties of Functions

- A function $f: A \rightarrow B$ is said to be one-to-one (or injective), if and only if

$$
\forall x, y \in A(f(x)=f(y) \rightarrow x=y)
$$

- In other words: f is one-to-one if and only if it does not map two distinct elements of A onto the same element of B.

Properties of Functions

- And again...
f(Linda) $=$ Moscow
f(Max) = Boston
f(Kathy) = Hong Kong
f(Peter) = Boston
- Is fone-to-one?
$g($ Linda $)=$ Moscow
$g($ Max $)=$ Boston
$g($ Kathy $)=$ Hong Kong
$g($ Peter $)=$ New York
Is g one-to-one?
Yes, each element is assigned a
unique element of the image.
- No, Max and Peter are mapped onto the same element of the image.

Properties of Functions

- How can we prove that a function f is one-to-one?
- Whenever you want to prove something, first take a look at the relevant definition(s):
$\forall x, y \in A(f(x)=f(y) \rightarrow x=y)$
- Example:
$f: \mathbb{R} \rightarrow \mathbb{R}$
$f(x)=x^{2}$
- Disproof by counterexample:
$f(3)=f(-3)$, but $3 \neq-3$, so f is not one-to-one.

Properties of Functions

- ... and yet another example:
$f: R \rightarrow R$
$f(x)=3 x$
- One-to-one: $\forall x, y \in A(f(x)=f(y) \rightarrow x=y)$

To show: $f(x) \neq f(y)$ whenever $x \neq y$
$x \neq y$
$\Leftrightarrow 3 x \neq 3 y$
$\Leftrightarrow f(x) \neq f(y)$,

- so if $x \neq y$, then $f(x) \neq f(y)$, that is, f is one-to-one.

Properties of Functions

- A function $f: A \rightarrow B$ with $A, B \subseteq \mathbb{R}$ is called strictly increasing, if

$$
\forall x, y \in A(x<y \rightarrow f(x)<f(y))
$$

- and strictly decreasing, if $\forall x, y \in A(x<y \rightarrow f(x)>f(y))$.
- Obviously, a function that is either strictly increasing or strictly decreasing is one-to-one.

Properties of Functions

- A function $f: A \rightarrow B$ is called onto, or surjective, if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a)=b$.
- In other words, f is onto if and only if its range is its entire codomain.
- A function $f: A \rightarrow B$ is a one-to-one correspondence, or a bijection, if and only if it is both one-to-one and onto.
- Obviously, if f is a bijection and A and B are finite sets, then $|A|=|B|$.

Properties of Functions

Examples:
In the following examples, we use the arrow representation to illustrate functions $f: A \rightarrow B$. In each example, the complete sets A and B are shown.

Properties of Functions

\author{

- Is finjective?
}
- No.
- Is f surjective?
- Yes.
- Is f bijective?
- No.

Properties of Functions

- Is finjective?
- Yes.
- Is f surjective?
- No.
- Is f bijective?
- No.

Properties of Functions

97

Properties of Functions

- Is finjective?
- Yes.
- Is f surjective?
- Yes.
- Is f bijective?
- Yes.

Inversion

- An interesting property of bijections is that they have an inverse function.
- The inverse function of the bijection $f: A \rightarrow B$ is the function $f^{-1}: B \rightarrow A$ with $f^{-1}(b)=a$ whenever $f(a)=b$.

99

Inversion

Inversion

Example:
$f($ Linda $)=$ Moscow
f(Max) = Boston
f(Kathy) = Hong Kong
$f($ Peter $)=$ Lübeck
f(Helena) $=$ New York
Clearly, f is bijective.

The inverse function f^{-1} is given by:

$$
\begin{aligned}
& \mathrm{f}^{-1}(\text { Moscow })=\text { Linda } \\
& \mathrm{f}^{-1}(\text { Boston })=\mathrm{Max} \\
& \mathrm{f}^{-1}(\text { Hong Kong })=\text { Kathy } \\
& \mathrm{f}^{-1}(\text { Lübeck })=\text { Peter } \\
& \mathrm{f}^{-1}(\text { New York })=\text { Helena }
\end{aligned}
$$

Inversion is only possible for bijections (= invertible functions)

Inversion

$f^{-1}: C \rightarrow P$ is no function, because it is not defined for all elements of C and assigns two images to the pre-image New York.

Composition

The composition of two functions $g: A \rightarrow B$ and $f: B \rightarrow C$, denoted by $f \circ g$, is defined by:

$$
(f \circ g)(a)=f(g(a))
$$

This means that

first, function g is applied to element $a \in A$, mapping it onto an element of B,
then, function f is applied to this element of B, mapping it onto an element of C.
Therefore, the composite function maps from A to C.

Composition

- Example:

$$
\begin{aligned}
& f(x)=7 x-4, g(x)=3 x \\
& f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R} \\
& (f \circ g)(5)=f(g(5))=f(15)=105-4=101 \\
& (f \circ g)(x)=f(g(x))=f(3 x)=21 x-4
\end{aligned}
$$

Composition

- Composition of a function and its inverse:

$$
\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=x
$$

- The composition of a function and its inverse is the identity function $i(x)=x$.

The Graphs of Functions

- The graph of a function $f: A \rightarrow B$ is the set of ordered pairs $\{(a, b) \mid a \in A$ and $f(a)=b\}$.
- The graph is a subset of $A \times B$ that can be used to visualize f in a two-dimensional coordinate system.
Example: The graph of the function $f(x)=2 n+1$ and the function $f(x)=x^{2}$ when n is an interger

FIGURE 8 The graph of $f(n)=2 n+1$ from Z to Z .

FIGURE 9 The graph of $f(x)=x^{2}$
from Z to Z.

Floor and Ceiling Functions

The floor and ceiling functions map the real numbers onto the integers $(\mathbb{R} \rightarrow \mathbb{Z})$.

The floor function assigns to $r \in \mathbb{R}$ the largest $z \in \mathbb{Z}$ with $z \leq r$, denoted by $\lfloor r\rfloor$.
-Examples: $\lfloor 2.3\rfloor=2,\lfloor 2\rfloor=2,\lfloor 0.5\rfloor=0,\lfloor-3.5\rfloor=-4$

The ceiling function assigns to $r \in \mathbb{R}$ the smallest $z \in \mathbb{Z}$ with $z \geq r$, denoted by $\lceil r\rceil$.

- Examples: $\lceil 2.3\rceil=3,\lceil 2\rceil=2,\lceil 0.5\rceil=1,\lceil-3.5\rceil=-3$

Sequences

- Sequences represent ordered lists of elements.
- A sequence is defined as a function from a subset of \mathbb{N} to a set S. We use the notation a_{n} to denote the image of the integer n. We call a_{n} a term of the sequence.

Sequences

- We use the notation $\left\{a_{n}\right\}$ to describe a sequence.
- Important: Do not confuse this with the $\}$ used in set notation.
- It is convenient to describe a sequence with an equation.
- For example, the sequence on the previous slide can be specified as $\left\{a_{n}\right\}$, where $a_{n}=2 n$.

109

The Equation Game

What are the equations that describe the following sequences $a_{1}, a_{2}, a_{3}, \ldots$?

$$
\begin{array}{ll}
1,3,5,7,9, \ldots & a_{n}=2 n-1 \\
-1,1,-1,1,-1, \ldots & a_{n}=(-1)^{n} \\
2,5,10,17,26, \ldots & a_{n}=n^{2}+1 \\
0.25,0.5,0.75,1,1.25 \ldots & a_{n}=0.25 n \\
3,9,27,81,243, \ldots & a_{n}=3^{n}
\end{array}
$$

