CS220: Applied Discrete Mathematics

Summer 2022

Instructor: Bang Tran

Boolean Operations

• The **complement** is denoted by a bar (on the slides, we will use a minus sign). It is defined by

 $\overline{0} = 1$ and $\overline{1} = 0$.

• The **Boolean sum**, denoted by + or by OR, has the following values:

1 + 1 = 1, 1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0

• The **Boolean product**, denoted by · or by AND, has the following values:

 $1 \cdot 1 = 1, \quad 1 \cdot 0 = 0, \quad 0 \cdot 1 = 0, \quad 0 \cdot 0 = 0$

Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions

Boolean Functions and Expressions • **Example:** Give a Boolean expression for the Boolean function F(x, y) as defined by the following table: F(x, y)Х У **Possible solution:** $F(x, y) = \bar{x} \cdot y$ Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions

Identitie	.5			
There are us	eful identities of Boo	olean express	sions that can	help us to
	expression A into a	•		•
				,
	Identity Name	AND Form	OR Form	
	Identity Law	1x = x	0+x=x	
	Null (or Dominance) Law	0x = 0	1+ <i>x</i> = 1	
	Idempotent Law	XX = X	X+X = X	
	Inverse Law	$x\overline{x} = 0$	$x + \overline{x} = 1$	
	Commutative Law	Xy = yX	X+Y=Y+X	
	Associative Law	(XY)Z = X(YZ)	(X+Y)+Z = X+(Y+Z)	
	Distributive Law	X+YZ = (X+Y)(X+Z)	X(y+z) = Xy+Xz	
	Absorption Law	X(X+Y) = X	X + XY = X	
	DeMorgan's Law	$(\overline{X}\overline{Y}) = \overline{X} + \overline{Y}$	$(\overline{X+Y}) = \overline{XY}$	
	Double Complement Law	$\overline{X} =$	x	
		1		UMas Bosto

Definition

A set is an unordered collection of objects, called elements or members of the set.

Notation $A = \{a_1, a_2, ..., a_n\}$

We write $a \in A$ to denote that a is an element of the set A.

The notation $a \notin A$ denotes that a is not an element of the set A

Order of elements is meaningless.

It does not matter how often the same element is listed.

Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions

51

51

Set Examples "Standard" Sets: Natural numbers $\mathbb{N} = \{0, 1, 2, 3, ...\}$ Natural numbers $\mathbb{N} = \{0, 1, 2, 3, ...\}$ $\mathbb{N} = \{1, 2, 3, 4, ...\}$ Real Numbers $\mathbb{R} = \{47, 3, -12, \pi, ...\}$ Rational Numbers $\mathbb{Q} = \{1.5, 2.6, -3.8, 15, ...\}$ (orrect definition will follow)

<section-header><text><equation-block><text><equation-block><equation-block><equation-block><equation-block>

<section-header><section-header><section-header><section-header><text><text><equation-block><page-footer>

~	n
n	ч
0	-

Identity	Name
$A \cap U = A$	Identity laws
$A \cup \emptyset = A$	
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$	Idempotent laws
$A \cap A = A$	F
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$	Commutative laws
$A \cap B = B \cap A$	
$A \cup (B \cup C) = (A \cup B) \cup C$	Associative laws
$A \cap (B \cap C) = (A \cap B) \cap C$	
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
$\overline{\overline{A \cap B}} = \overline{\overline{A} \cup \overline{B}}$ $\overline{\overline{A \cup B}} = \overline{\overline{A} \cap \overline{B}}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws
A A = 9	

<section-header><text><text><list-item><text><equation-block><equation-block>

Bost

Composition

The **composition** of two functions $g: A \rightarrow B$ and $f: B \rightarrow C$, denoted by $f \circ g$, is defined by:

 $(f \circ g)(a) = f(g(a))$

This means that

first, function g is applied to element $a \in A$, mapping it onto an element of B,

then, function f is applied to this element of B, mapping it onto an element of C.

Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions

Therefore, the composite function maps from *A* to *C*.

103

103

Omposition • Example: f(x) = 7x - 4, g(x) = 3x, $f: \mathbb{R} \rightarrow \mathbb{R}$, $g: \mathbb{R} \rightarrow \mathbb{R}$ $(f \circ g)(5) = f(g(5)) = f(15) = 105 - 4 = 101$ $(f \circ g)(x) = f(g(x)) = f(3x) = 21x - 4$

