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Summary of Proofs (Theorem)

* Direct proof

* Adirect proof of p = q is true by showing
« Indirect proof that if p is true, then 'q must also be true,
so that the combination p true and q false
* Prove by cases

never occurs.

* Proof by contradiction > First step: assuming that p is true
» Second step: showing that q is also
true
2 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions




Summary of Proofs (Theorem)

* Direct proof
* Indirect proof <
* Prove by cases

* Proof by contradiction

An implication p—q is equivalent to its
contrapositive -q — —p.
Therefore, we can prove p—q by showing

that whenever q is false, then p is also false.

» Step 1: Introduce —q as a premise
> Step 2: attempt to derive —p

Is also called proof by contraposition
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Summary of Proofs (Theorem)

* Direct proof

* Indirect proof

* Prove by cases
* Proof by contradiction

A proof by cases must cover all possible
cases that arise in a theorem.

To prove (py Vp V=V py) = q
we prove that

@1 > D A@2> QA V (Pr— q)
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Summary of Proofs (Theorem)

* Direct proof
* Indirect proof
* Prove by cases

Because the statementr A —risa
contradiction whenever r is a proposition,
we can prove that p is true if we can show
that =p = (r A =) is true for some

* Proof by contradiction proposition r
i » Step 1: Introduce —p as a premise

» Step 2: attempt to derive a contradiction —r A1
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Boolean Algebra

Chapter 12 in the textbook
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Boolean Algebra

* Boolean algebra provides the operations and the rules for working
with the set {0, 1}.

* These are the rules that underlie electronic circuits, and the methods
we will discuss are fundamental to VLSI design.

* We are going to focus on 3 operations:
¢ Boolean complementation,
*Boolean sum, and

*Boolean product
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Boolean Operations

* The complement is denoted by a bar (on the slides, we will use a minus sign). It is
defined by

0=1and 1 = 0.

* The Boolean sum, denoted by + or by OR, has the following values:

1+1=1, 1+0=1, 0+1=1, 0+0=0

* The Boolean product, denoted by - or by AND, has the following values:
1-1=1, 1-0=0, 01 =0, 0-0=0
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Boolean Functions and Expressions

* Definition: Let B = {0, 1}. The variable x is called a Boolean variable if it
assumes values only from B.

* A function from B", the set {(x1, Xy, ..., X,) |x;€B,1 <i<n}, toBis called a
Boolean function of degree n.

* Boolean functions can be represented using expressions made up from Boolean
variables and Boolean operations.
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Boolean Functions and Expressions

* The Boolean expressions in the variables x4, x5, ..., x,, are defined recursively as
follows:

* 0,1,xq,xy, ..., X, are Boolean expressions.

* If E; and E, are Boolean expressions, then Ey, (E1E>), and (E; + E>) are
Boolean expressions.

* Each Boolean expression represents a Boolean function. The values of this
function are obtained by substituting 0 and 1 for the variables in the expression.
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Boolean Functions and Expressions

* For example, we can create Boolean expression in the variables x, y, and z using
the “building blocks” 0, 1, x, y, and z, and the construction rules:

* Since x and y are Boolean expressions, so is xY.
* Since z is a Boolean expression, so is Z.

* Since xy and Z are Boolean expressions,
soisxy + Z.

e ..andsoon..
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Boolean Functions and Expressions

* Example: Give a Boolean expression for the Boolean function F(x, y) as defined
by the following table:

X y F(x,y)
0 0 0
0 1 1
1 0 0
1 1 0

Possible solution: F(x,y) =x -y
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Boolean Functions and Expressions

* Another Example:

x|yl z]| Flxvz) Possible solution I:
o|o|o0 1 F(x,y,z) = xz +y
0|01 1

0|10 0

0 1 1 0 Possible solution II:

110l o0 1 F(x,y,z) = (x2)y
1101 0

111]0 0

1111 0
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Boolean Functions and Expressions

* There is a simple method for deriving a Boolean expression for a function that is
defined by a table. This method is based on minterms.

* Definition: A literal is a Boolean variable or its complement. A minterm of the
Boolean variables x4, x, ..., X, is @ Boolean product y1y; ... y,,, where y; = x;or
yi =X;.

* Hence, a minterm is a product of n literals, with one literal for each variable.
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Boolean Functions and Expressions

* Consider F(x,y,z) again:

F(x,y,z) = 1ifandonly if:

x|y|z]|Fxy2)
olofo| 1 xX=Y= (Z) =0 °1r
olol1] 1 r=y=Sz=aor
x=1y=2z=20
0{1(0 0
0|11 0 Theref
1lolo 1 ererore, . B B
1ol 0 F(x,y,z) = XyZ + Xyz + xyZ
111]0 0
111]1 0
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Boolean Functions and Expressions
* Definition: The Boolean functions F and G of n variables are equal if
and only if F(by, b,, ..., b,) = G(by,b,, ..., b,) whenever
by, b,, ..., b, belong to B.
* Two different Boolean expressions that represent the same function
are called equivalent.
* For example, the Boolean expressions xy,xy + 0, and xy-1 are
equivalent.
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Boolean Functions and Expressions

* The complement of the Boolean function F is the function F, where
F(by, by, ...,b,) = F(by, by, ..., by).

* Let F and G be Boolean functions of degree n. The Boolean sum F +
G and Boolean product FG are then defined by

(F +G)(by, by, ..., b)) = F(by, by, ...,b,) + G(by, by, ..., by)
(FG)(bl, bz, ey bﬂ,) = F(bl, bz, . bn) . G(bl, bz, . bn)
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17

Boolean Functions and Expressions

* Question: How many different Boolean functions of degree 1 are
there?

* Solution: There are four of them, F,, F,, F5, and F,:

X Fl FZ F3 F4_
0 0 0 1 1
1 0 1 0 1

18 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
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Boolean Functions and Expressions

*Question: How many different Boolean functions of degree 2 are
there?

*Solution: There are 16 of them, F, F,, ..., Fy¢:

19 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions

19

Boolean Functions and Expressions
* Question: How many different Boolean functions of degree n are

there?

* Solution:

* There are 2™ different n-tuples of Os and 1s.

* A Boolean function is an assignment of 0 or 1 to each of these 2" different n-
tuples.

* Therefore, there are 22" different Boolean functions.
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Identities

There are useful identities of Boolean expressions that can help us to
transform an expression A into an equivalent expression B, e.g.:

Identity Name AND Form OR Form
Identity Law X=X O+x=x
Null (or Dominance) Law [Ox=0 1+x=1
Idempotent Law XX =X X+X =X
Inverse Law XX=0 X+X=1
Commutative Law Xy =yx X+y = y+X
Associative Law (xy)z = x(yz) (X+Y)+Z = X+(y+2)
Distributive Law X+YZ = (X+Y)(X+2)| X(y+2) = Xy+xZ
Absorption Law X(X+y) =X X+XY =X
DeMorgan’s Law (Xy) =X+y (X+y) =Xy

Double Complement Law X=x

21 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions

21

Definition of a Boolean Algebra

* All the properties of Boolean functions and expressions that we have
discovered also apply to other mathematical structures such as
propositions and sets and the operations defined on them.

* |If we can show that a particular structure is a Boolean algebra, then
we know that all results established about Boolean algebras apply to
this structure.

* For this purpose, we need an abstract definition of a Boolean algebra

22 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
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Definition of a Boolean Algebra

Definition: A Boolean algebra is a set B with two binary operations v
and A, elements 0 and 1, and a unary operation — such that the
following properties hold for all x, y, and z in B:

xv0 =x and xAl = x (identity laws)
xvx =1 and xAXx =0 (domination laws)
(xvy)vz = xv(yvz) and
(xAy)rnz = xA(ynz) and (associative laws)
XVYy = yvx andx Ay = yAX (commutative laws)
xv(ynz) = (xvy)a(xvz)and
xAn(yvz) = (xAry)v(xaz) (distributive laws)
23 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
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Logic Gates
Electronic circuits consist of so-called gates. There are three basic types
of gates:
_ X X X+y x —P Xy
—o— I
(a) Inverter (b) OR gate (c) AND gate
24 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
24

12



Logic Gates

* Example: How can we build a circuit that computes the function

Xy +Xxy? \ r}

N
4’D—} Xy +Xy
) .

X
X

\.
\.

L%‘—»}

»
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Minimization of Circuits
Chapter 12.4 int the textbook
26 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
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Minimization of Circuits

* The efficiency of a combinational circuit depends on the number and
arrangement of its gates.

* We can always use the sum-of-products expansion of a circuit to find
a set of logic gates that will implement this circuit. However, the sum-
of-products expansion may contain many more terms than are
necessary.

—D
el
Biary
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Minimization of Circuits
* Reducing the number of gates on a chip can lead to a more reliable
circuit and can reduce the cost to produce the chip.
* Minimization makes it possible to fit more circuits on the same chip.
* Minimization reduces the number of inputs to gates in a circuit. The
number of inputs to a gate may be limited because of the particular
technology used to build logic gates.
* Reduces the time used by a circuit to compute its output.
28 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
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Karnaugh Maps (K-Maps)

* Special form of a truth table which enables easier pattern recognition
* Pictorial method of simplifying Boolean expressions
* Good for circuit designs with up to 4 variables
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29
Truth Table K-Map
x y |FGuy) x5, 1
y
0 0 0
0 0 1
0 1 1
1 0 1 1 1 1
1 1 1
F
30 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
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Karnaugh Maps (K-Maps)

Truth Table K-Map
x y |[F(xy) X, 1
y
0 0 0
0 0 1
0 1 0
1 0 1 1 0 1
1 1 1
F=x
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31
Truth Table K-Map
x y |FGuy) x5, 1
y
0 0 0
0 0 1
0 1 1
1 0 1 1| (1 1 l
1 1 1
The vertical group shows that the output is independent to y
The horizontal group shows that the ouput is independent to x
F=x+y
32 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
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Karnaugh Maps (K-Maps)

Truth Table K-Map
x y |FCy) X, 1
y
0 0 1
0 l 1 1 l
0 1 1
1 0 1 1 l 1 1 J
1 1 1
The output is independent to all of inputs
F=1
33 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
33
Truth Table K-Map
x y |FGuy) x5, 1
y
0 0 0
0 ‘ 1 1 ]
0 1 1
1 0 1 1 1 0
1 1 1
The 1s in vertical group are always x
The 1s horizontal group are always y
F=x+y
34 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
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K-Map in three variables
Truth Table
x|y |z [Fay2 K-Map
0 0 0 0
yz 00 01 11 10
0 0 1 0 x
0 1 0 1 0 0 0 /l_q
0 1 1 1 . (1 i d
1 0 0 1
1 0 1 1
F=x+y

1 1 0 1
1 1 1 1
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35
K-Map in three variables K-Map
Truth Table
x y z |F(x,y,2) 2 <« 00 01 11 10
0 0 0 0 0 0 (1 1 q Wrong! A group of 1s
can only contain 2" of 1s
0 0 1 0
1 0 E 1 J

0 1 0 1
0 1 1 1
- ° ° - Xy 00 01 11 10
1 0 1 1 z
1 1 0 1 0 0 [1 m 11 Correct!
1 1 1 1 1 0 Ll U 1J
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K-Map in three variables

vz Yz
00 01 11 10 x 00 01 11

00 01 11 10
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Grouping rules in K-Maps

* A group must only contains 1s, no Os

* A group can only be horizontal or vertical, not diagonal
* A group must contain 2" (1, 2, 4, 8, etc.) of 1s

* Each group should be as large as possible

* Groups may overlap

* Groups may wrap around a table

* Every 1 must be in at least one group

38 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
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K-Map in three variables

* Use K-maps to minimize these sum-of-production expansions.
a) xXyZ+xyzZ+Xxyz+xyz
b) xyz+xyZ+ Xyz+xyz+xyz
C) xXyz+xyzZ+xyz+xyzZ+Xxyz+xyz+xyz
d) xyz+xyzZ+xyz+xyz
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K-Map in three variables
a)XyzZ + xyz + xyz + xyz
yz yz yZ yz
x 11D
: 1)
F=xZ+yZ+Xxyz
40 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
40
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K-Map in three variables
b) xyz + xyZ + Xyz + Xyz + xyzZ

x an
71D |dr

F=y+xz
41 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
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K-Map in three variables
C)xyz +xyzZ+ xyz +xyzZ +Xyz +Xyz + xXyz
yz_yz yz yz
x (] [[1 [N B
X 1
1Y LEJ_,
F=x+y+z
42 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
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K-Map in three variables

d) xyzZ + xyzZ + xyz + xyz
yz yzZ yzZ_yz
x (1 [[1)

% &1)

F=xZ+yz+xy

The prime implicant yZ is not essential because
the cells it covers are covered by other prime implicants.

F =xzZ+xy
43 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
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K-Map in four variables
yz yz _yz yz yz yz _yz _yz
wx wx | 1
wx wx
wx wx
wx wx | 1 1
44 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
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K-Map in four variables

yz Yz _yz _yz yz___ Yz _yzZ _yz
wx wx 1
wx wx 1 1
wEl 1 |1 | 1| 1 wx 1] 1
wx wx 1 1
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K-Map in four variables
vz vz yz  yz yz vz yz  yz
wx wx 1
wx wx
wx | 1 1 wx
wx wx 1 1
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i yZz ¥z yz yz yz  yz |yz|
wx 3 QQ‘ wx 1 w
wx 1 1 wil| 1
wx wx 1 (1 W
wx wx
[ ]
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yz yz Yz _yz

wx 1 1 1
Wi ( 1 1)
wXx 1 1
wx 1

—/
49 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
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Definition

A set is an unordered collection of objects, called elements or members
of the set.

Notation A = {ay, a,, ...,a,}
We write a € A to denote that a is an element of the set A.
The notation a & A denotes that a is not an element of the set 4

Order of elements is meaningless.

It does not matter how often the same element is listed.

51 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
51
Set Examples
“Standard” Sets:
Natural numbers N = {0,1,2,3,...}
Integers Z ={.,-2,-1,0,1,2,..}
Positive Integers Z* = {1,2,3,4, ...}
Real Numbers R = {47.3,-12,x, ...}
Rational Numbers Q = {1.5,2.6,—3.8,15, ...}
(correct definition will follow)
52 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
52
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Set Examples

A=0 “empty set/null set”

A = {z} Note: z€ 4, but z # {z}

A = {{b, c}, {c, x, d}}

A = {{x,y}} Note: {x,y} €4, but {x, y}» {{x, y}}
A = {x|P(x)} “set of all x such that P(x)”

A= {x|xeNAx > 7} = {8,9,10,..}

53 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions

53

Set Examples

We are now able to define the set of rational numbers Q:

Q = {a/b|acZAbeZ*} orQ = {a/b|acZ AbeZ A b#0}

And how about the set of real numbers R ?
R = {r|risareal number}

That is the best we can do.

54 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
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Set representations

Roster Form
* All elements of the set are listed in-between curly brackets

Statement Form
* The well-defined descriptions of a member of a set
E.g., “The set of even numbers less than 20”
Set Builder Form
* The general formis A = {x : property}
Venn Diagram
* The simple and best way for visualized representation of sets.

55 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
55
Set Equality
Sets A and B are equal if and only if they contain exactly the same
elements.
A =1{9,2,7,-3}, B ={7,9-32k A =B
Examples:
A = {dog, cat, horse}, A+B
B = {cat, horse, squirrel,dog}
A = {dog, cat, horse}, B = {cat, horse,dog,dog} A =8B
56 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
56
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Subsets
AcB “Ais a subset of B”
AcCB iff every element of A is also an element of B.

We can completely formalize this: A € B < Vx (x€eA — xeB)

A={3,9},B={5,9,1, 3}, ACSB? true
Examples:
A={3,3,3,9},B={5,91,3}, ACSB? true
A={1,2,3},B={2, 3,4}, ACSB? false
57 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
57
Subsets
* Usefulrules: A = B&(AcBABcA);(AcB)A(BcC)=AcC
(see Venn Diagram)
V)
B
@ C
58 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
58
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Subsets

* Useful rules:
@ < Afor any set A
A c Aforanyset A

* Proper subsets:
AcB “Aisapropersubset of B”

Ac B Vx(xeA—> xeB) Adx (xeB A xgA)
or

Ac B Vx(xeA—> xeB) A =Vx (xeB —> xeA)

59 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
59
Cardinality of Sets
If a set S contains n distinct elements, neN,
we call S a finite set with cardinality n. We write |S| =n
Examples:
A = {Mercedes, BMW, Porsche}, |A] =3
B=1{1,1{2,3}, {4, 5}, 6} |B| =4
C=0 |C] =0
D={x€e N | x< 7000} |ID| = 7001
E={xeN|x>7000} E is infinite!
60 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
60
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The Power Set

* The power set is the set of all subsets of the given set A.

* We write:
24 or P(4) “power set of A”
24 = {B|Bc A} (contains all subsets of A)

* Examples:
A= {x,y272}
24 = {0, {x}, ¥} {z}, {x, ¥}, {x, 2}, (v, 2}, {x, y, 2}}
A=0
24 = {0}
Note: |A] = 0, |24 = 1
61 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
61
The Power Set
* Cardinality of power sets:
2A | = 2|A|
Imagine each element in A has an “on/off” switch
Each possible switch configuration in A corresponds to one element in 2A
Al 1 213|456 |78
X | X | X | X | X | x| x| x| Xx
YIYIYI|YI|Y | Y|Y|Y]Y
z|lz|lz|z|z|zl|lz|z]|2z
For 3 elements in A, there are 2X2X2 = 8 elements in 2A
62 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
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Cartesian Product

* The ordered n-tuple (a4, a,, ..., a,) is an ordered collection of objects.

* Two ordered n-tuples(a,, a,, ..., a,) and
(by, by, ..., by) are equal if and only if they contain exactly the same
elements in the same order, i.e., a; = b; for 1 <i <n.

The Cartesian product of two sets is defined as:
AxB = {(a,b) | acA A beB}

Example: A = {x,y}, B ={a, b, c}
AxB = {(x,a),(x,D), (x,c),(v,a), (¥, D), (v, c)}

63 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions

63

Cartesian Product

* Note that:
cAxp =0
ePxA =0
e For non-empty sets A and B: A#B < AxB # BxA
* |AxB| = |A|-|B]

* The Cartesian product of two or more sets is defined as:
A xA,x .. xAn = {(ay,a,, ...,an)|a; € A; for 1 <i<n}

64 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
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Partitions

Definition:
A partition of a set S is a collection of disjoint nonempty subsets of §
that have S as their union. In other words, the collection of subsets
Ai, iel, forms a partition of S if and only if:

1) A;#=Qforiel
2)ANA=0ifixj
3) Uiel Ai = S
65 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
65
Partitions
Examples: Let S be the set {u,m, b, 1,0, ¢, k, s}. Do the following
collections of sets partition S ?
{{m,o0,c,k},{r,u,b,s}} yes.
{{c,o,m, b}, {u, s}, {r}} no (k is missing).
{{b,7r,0,c,k},{m,u,s,t}} no (tisnotinS).
{{uym,b,r,0,c,k,s}} yes.
{b, 0,1k}, {r,u,m},{c,s}} no (ris in two sets).
{{u,m, b},{r,0,¢,k,s}, 0} no (@ is not allowed).
66 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
66
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Set Operations

* Union: AUB = {x | xeA v xeB}

4

A U B is shaded.

E.g.,A={a,b},B={b,c,d} AUB={a,b,c, d}

* Intersection: ANB ={x | xeA A xeB}

E.g., A={a, b}, B={b, c,d} AnB ={b} ‘

A N B is shaded.

67 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions

67

Set Operations

* Two sets are called disjoint if their intersection is empty, that is, they share no elements:
AnB =

* The difference between two sets A and B contains exactly those elements of A that are not in B:
A — B = {x|xeAArx¢B}

’

A - B is shaded.

U

Example: 4 = {1,2}, B = {2,4,6}, A— B = {1}

68 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
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Set Operations

* The complement of a set A contains exactly those elements under

consideration that are not in A:

A=U-A

Example: U =N, B = {250,251, 252,...}

B =N -B={0,1,2,..,248,249)

* Table 1 in Section 2.2 (8th edition) shows many useful equations for set

A is shaded.

identities.
69 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
69
Identity Name
AnU=A Identity laws
Aufi=A
AuU=U Domination laws
Anh=0
AUA=A Idempotent laws
ANnA=A
A=A Complementation law
AUB=BUA Commutative laws
ANB=BnNA
AUuBUC)=(AuB)UC Associative laws
ANBNCO)=ANnBNC
AUBNC)=(AUB)N(AUC) Distributive laws
ANBUC)=(ANBUMANC)
AnNB=AUB De Morgan’s laws
AUB=ANB
AUANB) =A Absorption laws
AN(AuB)=A
AUA=U Complement laws
ANA=0
70 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
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Set Operations

* How can we prove AU(BNC) = (AUB)N(AUC)?

* Method 1:
xe AU(BNC)
< xeAvxe(BNO)
< xeAv (xeB Axel)

< (xeAvxeB)A(xeAvixel)
(distributive law for logical expressions)

< xe(AUB) A xe(AUC)
< xe(AUB)N(AUC)
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71

Set Operations

Method 2: Membership table

1 means “x is an element of this set”, 0 means “x is not an element of
this set”

>
vs]

BNC | Au(BNC) |AuUB | AuC | (AuB) N(AUC)
0

AOAOAOAOO

DR A A~ OO
Ala|lAalalalOl~O

0
0
0
1
1
1
1
1

= (=IO O~ ]O O
A |lO|l0O|lO|~|O|lO|O
DAl A lalalO|O
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Set Operations

* Method 3: Apply existing Set identities

* Take-Home message:

Every logical expression can be transformed into an equivalent
expression in set theory and vice versa.
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Exercises
* Question 1:
GivenasetA={x,y,z}andasetB={1, 2, 3, 4},
what is the value of | 2Ax 28 | ?
* Question 2:
Is it true for all sets A and B that (AxB)"\(BxA) = ?
Or do A and B have to meet certain conditions?
* Question 3:
For any two sets Aand B, if A—B = and B— A =, can we conclude
that A = B? Why or why not?
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Exercises

* Question 1:
GivenasetA={x,y,z}andasetB={1, 2, 3, 4},
what is the value of |2A x 28| ?

Answer:
[2Ax 28| =2~ |- | 28| =2IAl.2IB1 =8.16 = 128
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Exercises

* Question 2:

Is it true for all sets A and B that (AxB)"\(BxA) = ?
Or do A and B have to meet certain conditions?

Answer:
If A and B share at least one element x, then both (AxB) and (BxA)
contain the pair (x, x) and thus are not disjoint.
Therefore, for the above equation to be true, it is necessary that
ANB=0J.
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Exercises

Question 3:

For any two sets Aand B, if A— B = and B— A = J, can we conclude that A = B? Why or why
not?

Answer:

Proof by contradiction: Assume that A # B.
Then there must be either an element x such that xeA and x¢B or an element y such that yeB
and ygA.

If x exists, then xe(A — B), and thus A—B # .

If y exists, then ye(B—A), and thus B— A # J.

This contradicts the premise A—B = J and B— A = J, and therefore we can conclude A = B.
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Functions
Chapter 2.3 in the textbook
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Functions

* A function f from a set A to a set B is an assignment of exactly one
element of B to each element of A.

* We write: f(a) = b

if b is the unique element of B assigned by the function f to the
element a of A.

If f is a function from A to B, we write f: A—>B
(note: Here, “—” has nothing to do with if... then)
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Terminologies

If f: A>B, we say that A is the domain of f and B is the codomain of f.
If f(a) = b, we say that b is the image of a and a is the pre-image of b.
The range of f: A—>B is the set of all images of elements of A.

We say that f: A—B maps A to B.
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Functions

Let us take a look at the function f: P—C with
P = {Linda, Max, Kathy, Peter}
C = {Boston,New York, Hong Kong, Moscow}

f(Linda) = Moscow
f(Max) = Boston
f(Kathy) = Hong Kong
f(Peter) = New York

Here, the range of f is C.
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Functions
* Let us re-specify f as follows:
f(Linda) = Moscow
f(Max) = Boston
f(Kathy) = Hong Kong
f(Peter) = Boston
What is its range?  {Moscow, Boston, Hong Kong}
* Is f still a function? yes
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Functions
e Other ways to represent f:
) Boston
X £ Linda
Linda Moscow New York
Max
Max Boston
Kathy Hong Kong
Hong
Kathy Kong
Peter Boston
Peter Moscow
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Functions
* If the domain of our function f is large, it is convenient to specify f
with a formula, e.g.,
f:R>R
f(x) = 2x
* This leads to:
f) =2
f@3) =6
f(=3) = -6
84 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
84

7/20/22

42



7/20/22

Functions

* Let f; and f, be functions from 4 to R.

* Then the sum and the product of f; and f, are also functions from A to R
defined by:

(i + L)) = fi(0) + f2(%)
(fifa) () = fi()f(0)

Example:
filx) = 3x, fb(x) = x +5
(i + 2)&x) = filx) + o(x) =3x + x + 5 =4x + 5
(fif)x) = fi()f(x) = 3x(x +5) = 3x2 + 15x
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Functions

* We already know that the range of a function f: A—B is the set of all
images of elements acA.

* If we only regard a subset ScA, the set of all images of elements s€S
is called the image of S.

* We denote the image of S by f(5):
f(&) = {f(s)|seS}
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Functions

* Let us look at the following well-known function:
f(Linda) = Moscow
f(Max) = Boston
f(Kathy) = Hong Kong
f(Peter) = Boston

* What is the image of S = {Linda, Max}?
f(S) = {Moscow, Boston}

* What is the image of S = {Max, Peter}?
f(S) = {Boston}
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Properties of Functions

* A function f: A—B is said to be one-to-one (or injective), if and only if

vx,yeA(f(x) = f(y) >x = y)

* In other words: f is one-to-one if and only if it does not map two
distinct elements of A onto the same element of B.
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Properties of Functions

* And again...
f(Linda) = Moscow g(Linda) = Moscow
g(Max) = Boston
f(Max) = Boston g(Kathy) = Hong Kong
f(Kathy) = Hong Kong g(Peter) = New York
f(Peter) = Boston Is g one-to-one?
Yes, each element is assigned a
* Is f one-to-one? unique element of the image.

* No, Max and Peter are mapped onto the same element of the image.
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Properties of Functions

* How can we prove that a function f is one-to-one?

* Whenever you want to prove something, first take a look at the relevant
definition(s):

Vx,yeA(f(x) = f(y) >x = y)
* Example:

fiR->R

fx) = x?

* Disproof by counterexample:
f(3) = f(=3), but3# —3,s0 f is not one-to-one.
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Properties of Functions

* ... and yet another example:
f:R>R
f(x) = 3x

* One-to-one: Vx,yeA (f(x) = f(y) > x = y)
To show: f(x) # f(y) whenever x #y
X#Y
< 3x# 3y

S f)=fO),
* soif x #y, then f(x) # f(y), that s, f is one-to-one.
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Properties of Functions

* A function f: A—>B with A, B c R is called strictly increasing, if

vx,yed(x <y—>f(x) < f(¥),

* and strictly decreasing, if Vx,yeA (x < y—> f(x) > f(y)).

* Obviously, a function that is either strictly increasing or strictly

decreasing is one-to-one.
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Properties of Functions

* A function f: A—>B is called onto, or surjective, if and only if for every
element beB there is an element ae A with f(a) = b.

* In other words, f is onto if and only if its range is its entire codomain.

* A function f: A—B is a one-to-one correspondence, or a bijection, if and
only if it is both one-to-one and onto.

* Obviously, if f is a bijection and A and B are finite sets, then |A| = |B]|.
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Examples:
In the following examples, we use the arrow representation to illustrate functions f: A—>B.
In each example, the complete sets A and B are shown.
Linda Boston Is f injective?
No.
Is f surjective?
Max New York No.
Is f bijective?
No.
Kathy Hong Kong
Peter Moscow
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Properties of Functions

o . Linda Boston
* |s finjective?
* No.
. . New York
* Is f surjective?
* Yes.
. . Kathy Hong Kong
* |s f bijective?
* No.
Peter Moscow
Paul
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Properties of Functions
.. . Linda Boston
* |s f injective?
* Yes.
. . New York
* |s f surjective?
* No.
.. . Kathy Hong Kong
* |s f bijective?
* No.
Peter \ Moscow
Lubeck
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Properties of Functions
*Is f injective? Linda Boston
*No! f is not even a function!
Max New York
Kathy Hong Kong
Peter \ Moscow
Labeck
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Properties of Functions
* |s f injective? .
Linda Boston
* Yes.
* |s f surjective?
Max New York
* Yes.
. .. ad
Is f bijective: athy Hong Kong
* Yes.
Peter Moscow
Helena Libeck
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Inversion

* An interesting property of bijections is that they have an inverse
function.

* The inverse function of the bijection f: A—B is the function
f~1:B—>Awith f~1(b) = a whenever f(a) = b.

99 Applied Discrete Mathematics @ Class #2: Boolean Calculus, Sets, Functions
99
Linda Boston
f [—
Max New York
fr - IS
Kathy - - Hong Kong
Peter Moscow
Helena Libeck
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Inversion
Example: The inverse function f!is given by:
_ f(Moscow) = Linda
f(Lmda)_= Moscow f1(Boston) = Max
i(Ma)I'(\) —_Boston f1(Hong Kong) = Kathy
(Kathy) = I-!.ong Kong f1(Lubeck) = Peter
f(Peter) = Libeck f1(New York) = Helena

f(Helena) = New York
Inversion is only possible for bijections

Clearly, fis bijective. (= invertible functions)
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f~1:C—Pis no function, because it is not defined for all elements of C and assigns two images to
the pre-image New York.
Linda Boston
Max New York £
_—
Kathy -- Hong Kong | >
Peter Moscow
Helena . Libeck
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Composition

The composition of two functions g: A—B and f: B—C,
denoted by f o g, is defined by:

(feg)(@) = f(g(a))

This means that

first, function g is applied to element a€ A, mapping it onto an element
of B,

then, function f is applied to this element of B, mapping it onto an
element of C.

Therefore, the composite function maps from A to C.
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Composition
* Example:
f(x) = 7x - 4, g(x) = 3x,
fR>R, g R—>R
(f o g)(5) = f(g(5)) = f(15) = 105 -4 = 101
(f o g)(x) = f(g(x)) = f(3x) = 21x - 4
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Composition
* Composition of a function and its inverse:

fTre N =) = x

* The composition of a function and its inverse is the identity function
i(x) = x.
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The Graphs of Functions

* The graph of a function f: A—B is the set of ordered pairs
{(a,b) | acAand f(a) = b}.

* The graph is a subset of AxB that can be used to visualize f in a two-dimensional
coordinate system.

Example: The graph of the function f(x) = 2n + 1 and the function f(x) = x? whennis an
interger

[ > (3,9 (3.9e

°(-2,4) 2,4

Lhe o (l,1)

| 0,0

FIGURE 8  The graph of FIGURE 9  The graph of f(x) = x*
f(n)=2n+1fromZto Z. fromZ to Z.
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Floor and Ceiling Functions

The floor and ceiling functions map the real numbers onto the integers
(R—Z).

The floor function assigns to reR the largest zeZ with z<r, denoted
by Lr].
« Examples:[2.3] = 2,2] = 2,l05] = 0,Ll —3.5] = —4

The ceiling function assigns to reR the smallest zeZ with z > r,
denoted by (7],

« Examples: [2.3] = 3,[2] = 2,/05] = 1,[ =35] = =3
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Sequences

* Sequences represent ordered lists of elements.

* A sequence is defined as a function from a subset of N to a set S. We
use the notation a, to denote the image of the integer n. We call a,, a
term of the sequence.

2 3 5

4 6 8 10 ..

Example: l
subset of N: 1
2

4
S: 8
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Sequences

* We use the notation {a,} to describe a sequence.
* Important: Do not confuse this with the {} used in set notation.

* |t is convenient to describe a sequence with an equation.

* For example, the sequence on the previous slide can be specified as
{a,}, where a, = 2n.
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The Equation Game
What are the equations that describe the following sequences a,, a5, a3, ... ?
1,3,579,.. a,=2n-1
-1,1,-1,1,-1, ... a, = (-1)"
2,5,10,17, 26, ... a,=n%+1
0.25,0.5,0.75,1,1.25 ... a,=0.25n
3,9,27,81, 243, .. a,=3"
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