Summations

1

1

What does $\sum_{j=m}^{n} a_j$ stand for ?

```
It represents the sum a_m + a_{m+1} + a_{m+2} + \dots + a_n.
```

The variable j is called the index of summation, running from its **lower limit** m to its upper limit n. We could as well have used any other letter to denote this index.

Applied Discrete Mathematics @ Class #2: Sets, Functions

Summations How can we express the sum of the first 1000 terms of the sequence $\{a_n\}$ with $a_n = n^2$ for n = 1, 2, 3, ...? We write as $\sum_{j=1}^{100} a_j$ What is the value of $\sum_{j=1}^{6} a_j$ $t \pm 1 + 2 + 3 + 4 + 5 + 6 = 21$. What is the value of $\sum_{j=1}^{100} j$ $t \pm 1 + 2 + 3 + 4 + ... + 100 = much of work to calculate this...$

Matrix Multiplication

Let A be an m \times k matrix and B be a k \times n matrix.

The product of A and B, denoted by AB, is the $m \times n$ matrix with (i, j)th entry equal to the sum of the products of the corresponding elements from the i-th row of A and the j-th column of B.

In other words, if $AB = [c_{ii}]$ then

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ik}b_{kj} = \sum_{t=1}^{k} a_{it} b_{tj}$$

Applied Discrete Mathematics @ Class #2: Sets, Functions

8

DescriptionThe identity matrix of order n is the n×n matrix $I_n = [\delta_{ij}]$, where $\delta_{ij} = i$ i = j and $\delta_{ij} = 0$ if $i \neq j$:i = ji = j<

<text><text><text><text><text><page-footer><page-footer>

Example: $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$ $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}$ Join: $A \lor B = \begin{bmatrix} 1 \lor 0 & 1 \lor 1 \\ 0 \lor 1 & 1 \lor 1 \\ 1 \lor 0 & 0 \lor 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}$ Met: $A \land B = \begin{bmatrix} 1 \land 0 & 1 \land 1 \\ 0 \land 1 & 1 \land 1 \\ 1 \land 0 & 0 \land 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$

17

Zero-One Matrices

Let A = $[a_{ij}]$ be an m×k zero-one matrix and B = $[b_{ij}]$ be a k×n zero-one matrix.

Then the **Boolean product** of A and B, denoted by A·B, is the m×n matrix with (i, j)th entry $[c_{ij}]$, where

 $c_{ij} = (a_{i1} \wedge b_{1j}) \vee (a_{i2} \wedge b_{2i}) \vee ... \vee (a_{ik} \wedge b_{kj}).$

Note that the actual Boolean product symbol has a dot in its center.

Basically, Boolean multiplication works like the multiplication of matrices, but with computing \land instead of the product and \lor instead of the sum.

18

Applied Discrete Mathematics @ Class #2: Sets, Functions

Relations

If we want to describe a relationship between elements of two sets A and B, we can use **ordered pairs** with their first element taken from A and their second element taken from B.

Since this is a relation between **two sets**, it is called a **binary relation**.

Definition: Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

In other words, for a binary relation R we have $R \subseteq A \times B$. We use the notation aRb to denote that $(a, b) \in R$ and aRb to denote that $(a, b) \notin R$.

Applied Discrete Mathematics @ Class #3: Relations

25

<section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Combining Relations Definition: Let *R* be a relation on the set *A*. The powers R^n , n = 1, 2, ..., are defined inductively by: $R^1 = R$ $R^{n+1} = R^n \circ R$ In other words: $R^n = R \circ R^\circ ... \circ R$ (n times the letter *R*)

<section-header><text><section-header><section-header><text><text><text><text>

41

Representing Relations

We already know different ways of representing relations. We will now take a closer look at two ways of representation: Zero-one matrices and directed graphs.

If *R* is a relation from $A = \{a_1, a_2, ..., a_m\}$ to $B = \{b_1, b_2, ..., b_n\}$, then *R* can be represented by the zero-one matrix $M_R = [m_{ij}]$ with

• $m_{ij} = 1$, if $(a_i, b_j) \in R$, and

Applied Discrete Mathematics @ Class #3: Relations

• $m_{ij} = 0$, if $(a_i, b_j) \notin R$.

Note that for creating this matrix we first need to list the elements in A and B in a particular, but arbitrary order.

42

Agence and the second product of two sero-one matricesDescription of the second product of two sero-one matrices?Let $A = [a_{ij}]$ be an $m \times k$ zero-one matrix and $B = [b_{ij}]$ be a $k \times n$
zero-one matrix.Then the Boolean product of A and B, denoted by $A \circ B$, is the $m \times n$
matrix with (i, j)th entry $[c_{ij}]$, where: $c_{ij} = (a_{i1} \wedge b_{1j}) \lor (a_{i2} \wedge b_{2j}) \lor \cdots \lor (a_{ik} \wedge b_{kj}).$ Light for the second of the terms $(a_{in} \wedge b_{nj}) = 1$ for
some n; otherwise $c_{ij} = 0$.

<section-header><text><equation-block><text><text><text><text><equation-block><text>

Closures of Relations

Example 1: Find the **reflexive closure** of relation $R = \{(1, 1), (1, 2), (2, 1), (3, 2)\}$ on the set $A = \{1, 2, 3\}$.

Solution: We know that any reflexive relation on *A* must contain the elements (1, 1), (2, 2), and (3, 3).

By adding (2, 2) and (3, 3) to R, we obtain the reflexive relation S, which is given by $S = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (3, 3)\}.$

S is reflexive, contains R, and is contained within every reflexive relation that contains R.

Therefore, *S* is the **reflexive closure** of *R*.

Applied Discrete Mathematics @ Class #3: Relations

Closures of Relations Example 3: Find the **transitive closure** of the relation R = $\{(1,3), (1,4), (2,1), (3,2)\}$ on the set $A = \{1, 2, 3, 4\}$. **Solution:** *R* would be transitive, if for all pairs (a, b) and (b, c) in R there were also a pair (a, c) in R. If we add the missing pairs (1, 2), (2, 3), (2, 4), and (3, 1), will R be transitive? No, because the extended relation R contains (3, 1) and (1, 4), but does not contain (3, 4). By adding new elements to R, we also add **new requirements** for its transitivity. We need to look at **paths in digraphs** to solve this problem. 58

Applied Discrete Mathematics @ Class #3: Relations

Closures of Relations

Definition: A **path** from *a* to *b* in the directed graph *G* is a sequence of one or more edges $(x_0, x_1), (x_1, x_2), (x_2, x_3), \dots, (x_{n-1}, x_n)$ in *G*, where $x_0 = a$ and $x_n = b$.

In other words, a path is a **sequence of edges** where the terminal vertex of an edge is the same as the initial vertex of the next edge in the path.

This path is denoted by $x_0, x_1, x_2, ..., x_n$ and has **length** n. A path that begins and ends at the same vertex is called a **circuit** or **cycle**.

Closures of Relations

According to the train example, the transitive closure of a relation consists of the pairs of vertices in the associated directed graph that are connected by a path.

Definition: Let R be a relation on a set A. The connectivity relation R^* consists of the pairs (a, b) such that there is a path between a and b in R.

We know that R^n consists of the pairs (a, b) such that a and b are connected by a path of length n.

Therefore, R^* is the union of R^n across all positive integers n:

Applied Discrete Mathematics @ Class #3: Relations

$$R^* = \bigcup_{n=1}^{\infty} R^n = R^1 \cup R^2 \cup R^3 \cup \dots$$

63

Closures of Relations

This lemma is based on the observation that if a path from a to b visits any vertex more than once, it must include at least one **circuit**.

These circuits can be **eliminated** from the path, and the reduced path will still connect a and b.

Theorem: For a relation R on a set A with n elements, the transitive closure R^* is given by:

$$R^* = R \cup R^2 \cup R^3 \cup \dots \cup R^n$$

For matrices representing relations we have:

Applied Discrete Mathematics @ Class #3: Relations

$$M_{R^*} = M_R \lor M_R^{[2]} \lor M_R^{[3]} \lor \dots \lor M_R^{[n]}$$

_____ 65

Partial Orderings

Another example: Is the "inclusion relation" \subseteq a partial ordering on the power set of a set *S*?

 \subseteq is **reflexive**, because $A \subseteq A$ for every set A.

 \subseteq is **antisymmetric**, because if $A \neq B$, then $A \subseteq B \land B \subseteq A$ is false.

 \subseteq is **transitive**, because if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Consequently, $(P(S), \subseteq)$ is a partially ordered set.

Applied Discrete Mathematics @ Class #3: Relations

∟____ 71

Equivalence Relations

Example: Suppose that R is the relation on the set of strings that consist of English letters such that aRb if and only if l(a) = l(b), where l(x) is the length of the string x. Is R an equivalence relation?

Solution:

R is, because l(a) = l(a) and therefore *aRa* for any string *a*.

R is symmreflexiveetric, because if l(a) = l(b) then l(b) = l(a), so if *aRb* then *bRa*. *R* is transitive, because if l(a) = l(b) and l(b) = l(c), then l(a) = l(c), so *aRb* and *bRc* implies *aRc*.

R is an equivalence relation.

Equivalence Classes

Theorem: Let *R* be an equivalence relation on a set *S*. Then the **equivalence classes** of *R* form a **partition** of *S*. Conversely, given a partition $\{A_i \mid i \in I\}$ of the set *S*, there is an equivalence relation *R* that has the sets A_i , $i \in I$, as its equivalence classes.

<section-header><section-header><text><text><text><text>

n-ary Relations

Example:

Let $R = \{(a, b, c) \mid a = 2b \land b = 2c \text{ with } a, b, c \in \mathbb{Z}\}$

What is the degree of *R*? The degree of *R* is 3, so its elements are triples.

What are its domains? Its domains are all equal to the set of integers.

Is (2, 4, 8) in *R*? No.

Is (4, 2, 1) in *R*? Yes.

87

Applied Discrete Mathematics @ Class #3: Relations