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Summations

What does ∑!"#$ 𝑎! stand for ?

It represents the sum  𝑎! + 𝑎!"# + 𝑎!"$ +⋯+ 𝑎% .

The variable j is called the index of summation, running from its lower 
limit m to its upper limit n. We could as well have used any other letter 
to denote this index.
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Summations

How can we express the sum of the first 1000 terms of the sequence {an}
with an=n2 for  n = 1, 2, 3, … ?

We write as ∑!"%%&& 𝑎!

What is the value of ∑!"%' 𝑎!
It is 1 + 2 + 3 + 4 + 5 + 6 = 21.

What is the value of ∑!"%%&& 𝑗
It is 1 + 2 + 3 + 4 + … + 100  = much of work to calculate this…
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Summations

It is said that Carl Friedrich Gauss came up with the following formula:
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(
!"#

$

𝑗 =
𝑛(𝑛 + 1)

2

When you have such a formula, the result of any summation can be calculated 
much more easily, for example:

(
!"#

#%%

𝑗 =
100(100 + 1)

2 =
10100
2 = 5050

3

Double Summations

Corresponding to nested loops in C or Java, there is also double (or 
triple etc.) summation:

Example:

Applied Discrete Mathematics @ Class #2: Sets, Functions4

(
&"#

'

(
!"#

(

𝑖𝑗

= (
&"#

'

(𝑖 + 2𝑖)

=(
&"#

'

3𝑖

= 3 + 6 + 9 + 12 + 15 = 45
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Matrices

A matrix is a rectangular array of numbers.
A matrix with m rows and n columns is called an m´n matrix

Example:
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𝐴 =
−1 1
2.5 −0.3
8 0

is a 3×2 matrix.

A matrix with the same number of rows and columns is called square.

Two matrices are equal if they have the same number of rows and 
columns and the corresponding entries in every position are equal. 

5

Matrices

A general description of an m´n matrix A = [aij]: 
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𝐴 =

𝑎## 𝑎#( . . . 𝑎#$
𝑎(# 𝑎(( . . . 𝑎($
. . .
. . .
. . .

𝑎)# 𝑎)( . . . 𝑎)$

𝑎9%, 𝑎9:, . . . , 𝑎9$

𝑎#!
𝑎(!
.
.
.

𝑎)!

i-th row of A

j-th column of A
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Matrix Addition

Let A = [aij] and B = [bij] be m´n matrices.
The sum of A and B, denoted by A+B, is the m´n matrix that has aij + bij

as its (i, j)th element.

In other words, A+B = [aij + bij]. 

Example:

Applied Discrete Mathematics @ Class #2: Sets, Functions7

−2 1
4 8
−3 0

+
5 9
−3 6
−4 1

=
3 10
1 14
−7 1

7

Matrix Multiplication

Let A be an m´k matrix and B be a k´n matrix.
The product of A and B, denoted by AB, is the m´n
matrix with (i, j)th entry equal to the sum of the products of the 
corresponding elements from the i-th row of A and the j-th column of 
B.
In other words, if AB = [cij] then

Applied Discrete Mathematics @ Class #2: Sets, Functions8

𝑐9! = 𝑎9%𝑏%! + 𝑎9:𝑏:!+. . . +𝑎9;𝑏;! =1
<"%

;

𝑎9< 𝑏<!
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Matrix Multiplication

A more intuitive description of calculating C = AB: 
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- Take the first column of B 

𝐴 =

3 0 1
−2 −1 4
0 0 5
−1 1 0

- Turn it counterclockwise by 90o and superimpose it on the first row of A 

𝐵 =
2 1
0 −1
3 4

- Multiply corresponding entries in A and B and add the products: 3*2 + 0*0 + 1*3 = 9
- Enter the result in the upper-left corner of C

9

Matrix Multiplication

Now superimpose the first column of B on the second, third, …, m-th
row of A to obtain the entries in the first column of C (same order).

Then repeat this procedure with the second,  third, …, n-th column of 
B, to obtain to obtain the remaining columns in C (same order).

After completing this algorithm, the new matrix C contains the product 
AB.

Applied Discrete Mathematics @ Class #2: Sets, Functions10
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Matrix Multiplication

Let us calculate the complete matrix C: 
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𝐴 =

3 0 1
−2 −1 4
0 0 5
−1 1 0

𝐵 =
2 1
0 −1
3 4

𝐶 =
9
8
15
-2

7
15
20
-2

11

Identity Matrices

The identity matrix of order n is the n´n matrix 𝐼𝑛 = [d*+], where dij = 
1 if i = j and dij = 0 if i ¹ j:
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𝐴 =

1 0 . . . 0
0 1 . . . 0
. . .
. . .
. . .
0 0 . . . 1

Multiplying an m×n matrix A by an identity matrix of appropriate size does 
not change this matrix:

𝐴𝐼𝑛 = 𝐼#𝐴 = 𝐴

12
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Powers and Transposes of Matrices

The power function can be defined for square matrices. If A is an n´n matrix, we 
have:

𝐴& = 𝐼$,
𝐴A = 𝐴𝐴𝐴…𝐴 (𝑟 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑙𝑒𝑡𝑡𝑒𝑟 𝐴)

The transpose of an m´n matrix 𝐴 = [𝑎9!], denoted by 𝐴<, is the n´m matrix 
obtained by interchanging the rows and columns of A.

In other words, if 𝐴< = [𝑏9!], then 𝑏9! = 𝑎!9 for i = 1, 2, …, n and j = 1, 2, …, m.

Applied Discrete Mathematics @ Class #2: Sets, Functions13
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Powers and Transposes of Matrices

Example:

Applied Discrete Mathematics @ Class #2: Sets, Functions14

𝐴< = 2 0 3
1 −1 4

𝐴 =
2 1
0 −1
3 4

A square matrix A is called symmetric if A = At. Thus A = [aij] is symmetric if aij = aji for 
all i = 1, 2, …, n and j = 1, 2, …, n.

𝐴 =
5 1 3
1 2 −9
3 −9 4

𝐵 =
1 3 1
1 3 1
1 3 1

A is symmetric, B is not.

14
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Zero-One Matrices

A matrix with entries that are either 0 or 1 is called a zero-one matrix. 
Zero-one matrices are often used like a “table” to represent discrete 
structures.

We can define Boolean operations on the entries in zero-one matrices:
a b aÙb
0 0 0
0 1 0
1 0 0
1 1 1

a b aÚb
0 0 0
0 1 1
1 0 1
1 1 1

Applied Discrete Mathematics @ Class #2: Sets, Functions15

15

Zero-One Matrices

Let A = [aij] and B = [bij] be m´n zero-one matrices.

Then the join of A and B is the zero-one matrix with (i, j)th entry aij Ú
bij. The join of A and B is denoted by A Ú B.

The meet of A and B is the zero-one matrix with (i, j)th entry aij Ù bij.
The meet of A and B is denoted by A Ù B.

Applied Discrete Mathematics @ Class #2: Sets, Functions16
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Zero-One Matrices

Example:
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𝐴 =
1 1
0 1
1 0

𝐵 =
0 1
1 1
0 0

Join: 𝐴 ∨ 𝐵 =
1 ∨ 0 1 ∨ 1
0 ∨ 1 1 ∨ 1
1 ∨ 0 0 ∨ 0

=
1 1
1 1
1 0

Meet: 𝐴 ∧ 𝐵 =
1 ∧ 0 1 ∧ 1
0 ∧ 1 1 ∧ 1
1 ∧ 0 0 ∧ 0

=
0 1
0 1
0 0

17

Zero-One Matrices

Let A = [aij] be an m´k zero-one matrix and B = [bij] be a k´n zero-one matrix.

Then the Boolean product of A and B, denoted by A⋅B, is the m´n matrix 
with (i, j)th entry [cij], where

cij = (ai1 Ù b1j) Ú (ai2 Ù b2i) Ú … Ú (aik Ù bkj). 

Note that the actual Boolean product symbol has a dot in its center.

Basically, Boolean multiplication works like the multiplication of matrices, 
but with computing Ù instead of the product and Ú instead of the sum. 

Applied Discrete Mathematics @ Class #2: Sets, Functions18
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Zero-One Matrices

Example:

Applied Discrete Mathematics @ Class #2: Sets, Functions19

𝐴 = 1 0
1 1 𝐵 = 0 1

0 1

𝐴 ∘ 𝐵 = (1 ∧ 0) ∨ (0 ∧ 0) (1 ∧ 1) ∨ (0 ∧ 1)
(1 ∧ 0) ∨ (1 ∧ 0) (1 ∧ 1) ∨ (1 ∧ 1) = 0 1

0 1

19

Zero-One Matrices

Let A be a square zero-one matrix and r be a positive integer.

The r-th Boolean power of A is the Boolean product of r factors of A. 
The r-th Boolean power of A is denoted by A[r].

A[0] = In,
A[r] = A∘A ∘ ⋯ ∘ A     (r times the letter A)

Applied Discrete Mathematics @ Class #2: Sets, Functions20
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In-Class Exercise

Applied Discrete Mathematics @ Class #2: Sets, Functions21
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In-Class Exercise

Applied Discrete Mathematics @ Class #2: Sets, Functions22
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In-Class Exercise

Applied Discrete Mathematics @ Class #2: Sets, Functions23

23

Relations
Chapter 9 in the textbook

24
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Relations

If we want to describe a relationship between elements of two sets 𝐴
and 𝐵, we can use ordered pairs with their first element taken from 𝐴
and  their second element taken from 𝐵. 
Since this is a relation between two sets, it is called a binary relation.

Definition: Let A and B be sets. A binary relation from A to B is a subset 
of A´B.

In other words, for a binary relation 𝑅 we have 𝑅 Í 𝐴´𝐵.
We use the notation 𝑎𝑅𝑏 to denote that (𝑎, 𝑏)Î𝑅 and a𝑅/b to denote 
that (𝑎, 𝑏)Ï𝑅.

Applied Discrete Mathematics @ Class #3: Relations25

25

Relations
When (a, b) belongs to 𝑅, a is said to be related to b by 𝑅.

Example: Let P be a set of people, C be a set of cars, and D be the relation 
describing which person drives which car(s).

P = {Carl, Suzanne, Peter, Carla}, 
C = {Mercedes, BMW, tricycle}
D = {(Carl, Mercedes), (Suzanne, Mercedes),

(Suzanne, BMW), (Peter, tricycle)}

This means that Carl drives a Mercedes, Suzanne drives a Mercedes and a 
BMW, Peter drives a tricycle, and Carla does not drive any of these vehicles.

Applied Discrete Mathematics @ Class #3: Relations26
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Functions as Relations

You might remember that a function 𝑓 from a set 𝐴 to a set 𝐵 assigns a unique 
element of 𝐵 to each element of 𝐴.

The graph of 𝑓 is the set of ordered pairs (𝑎, 𝑏) such that 𝑏 = 𝑓 𝑎 .

Since the graph of 𝑓 is a subset of 𝐴´𝐵, it is a relation from 𝐴 to 𝐵.

Moreover, for each element 𝑎 of 𝐴, there is exactly one ordered pair in the graph 
that has 𝑎 as its first element.

Applied Discrete Mathematics @ Class #3: Relations27

27

Functions as Relations

Conversely, if 𝑅 is a relation from 𝐴 to 𝐵 such that every element in 𝐴 is the first 
element of exactly one ordered pair of 𝑅, then a function can be defined with 𝑅 as 
its graph.

This is done by assigning to an element 𝑎Î𝐴 the unique element 𝑏Î𝐵 such that 
(𝑎, 𝑏)Î𝑅.

Applied Discrete Mathematics @ Class #3: Relations28
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Relations on a Set

Definition: A relation on the set 𝐴 is a relation from 𝐴 to 𝐴.

In other words, a relation on the set 𝐴 is a subset of 𝐴´𝐴.

Example: Let 𝐴 = {1, 2, 3, 4}. Which ordered pairs are in the relation 

𝑅 = {(𝑎, 𝑏) | 𝑎 < 𝑏} ?

Applied Discrete Mathematics @ Class #3: Relations29

29

Relations on a Set

Solution: R = {

Applied Discrete Mathematics @ Class #3: Relations30

(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

R 1 2 3 4

1

2

3

4

1 1

2

3

4

2

3

4

X X X

X X

X

30
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Relations on a Set

How many different relations can we define on a set A with n
elements?
• A relation on a set 𝐴 is a subset of 𝐴´𝐴.
• How many elements are in 𝐴´𝐴 ?
• There are 𝑛2 elements in 𝐴´𝐴, so how many subsets (=relations on 𝐴) does 
𝐴´𝐴 have?
• The number of subsets that we can form out of a set with m elements is 2𝑚. 

Therefore, 2𝑛2 subsets can be formed out of 𝐴´𝐴.

Answer: We can define 2𝑛2 different relations on 𝐴.

Applied Discrete Mathematics @ Class #3: Relations31

31

Properties of Relations
We will now look at some useful ways to classify relations.

Definition: A relation 𝑅 on a set 𝐴 is called reflexive if (𝑎, 𝑎)Î𝑅 for every element 
𝑎Î𝐴.

Are the following relations on {1, 2, 3, 4} reflexive?

Applied Discrete Mathematics @ Class #3: Relations32

R = {(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)} No.

R = {(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)} Yes.

R = {(1, 1), (2, 2), (3, 3)} No.

Definition: A relation on a set 𝐴 is called irreflexive if (𝑎, 𝑎) ∉ 𝑅 for every 
element 𝑎 ∈ 𝐴.

32
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Properties of Relations

Definitions:
• A relation 𝑅 on a set 𝐴 is called symmetric if (𝑏, 𝑎)Î𝑅 whenever (𝑎, 𝑏)Î𝑅 for all 
𝑎, 𝑏Î𝐴.

• A relation 𝑅 on a set 𝐴 is called antisymmetric if 𝑎 = 𝑏 whenever (𝑎, 𝑏)Î𝑅
and (𝑏, 𝑎)Î𝑅.

• A relation 𝑅 on a set 𝐴 is called asymmetric if (𝑎, 𝑏)Î𝑅 implies that 
(𝑏, 𝑎)Ï𝑅 for all 𝑎, 𝑏Î𝐴. 

Applied Discrete Mathematics @ Class #3: Relations33
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Properties of Relations

Definition: A relation 𝑅 on a set 𝐴 is called transitive if whenever (𝑎, 𝑏)Î𝑅 and 
(𝑏, 𝑐)Î𝑅, then (𝑎, 𝑐)Î𝑅 for all 𝑎, 𝑏, 𝑐Î𝐴. 

Are the following relations on 𝐴 = {1, 2, 3, 4} transitive?

Applied Discrete Mathematics @ Class #3: Relations34

𝑅 = {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)} Yes.

𝑅 = {(1, 3), (3, 2), (2, 1)} No.

𝑅 = {(2, 4), (4, 3), (2, 3), (4, 1)} No.

𝑅 = {(1, 1), (1, 2), (2, 2), (2, 1), (3,3)} Yes.

34
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Counting Relations

Example: How many different reflexive relations can be defined on a set 𝐴
containing 𝑛 elements?

Solution:
• Relations on 𝑅 are subsets of 𝐴´𝐴, which contains 𝑛$ elements.
• Therefore, different relations on 𝐴 can be generated by choosing different subsets 

out of these 𝑛2 elements, so there are 2𝑛2 relations.
• A reflexive relation, however, must contain the 𝑛 elements (𝑎, 𝑎) for every 𝑎Î𝐴.
• Consequently, we can only choose among 𝑛2– 𝑛 = 𝑛(𝑛 – 1) elements to generate 

reflexive relations, so there are 2n(n – 1) of them.

Applied Discrete Mathematics @ Class #3: Relations35

35

Combining Relations

Relations are sets, and therefore, we can apply the usual set operations to them.

If we have two relations 𝑅1 and 𝑅2, and both of them are from a set 𝐴 to a set 𝐵, 
then we can combine them to 𝑅1È 𝑅2, 𝑅1Ç 𝑅2, or 𝑅1 – 𝑅2.

In each case, the result will be another relation from 𝑨 to 𝑩.

Applied Discrete Mathematics @ Class #3: Relations36
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Combining Relations

… and there is another important way to combine relations.

Definition: Let 𝑅 be a relation from a set 𝐴 to a set 𝐵 and 𝑆 a relation from 𝐵 to a 
set 𝐶. The composite of 𝑅 and 𝑆 is the relation consisting of ordered pairs (𝑥, 𝑧), 
where 𝑥Î𝐴, 𝑧Î𝐶, and for which there exists an element 𝑦Î𝐵 such that (𝑥, 𝑦)Î𝑅
and (𝑦, 𝑧)Î𝑆. We denote the composite of 𝑅 and 𝑆 by 𝑆°𝑅.

In other words, if relation 𝑅 contains a pair (𝑥, 𝑦) and relation 𝑆 contains a pair 
(𝑦, 𝑧), then 𝑆°𝑅 contains a pair (𝑥, 𝑧).

Applied Discrete Mathematics @ Class #3: Relations37

37

Combining Relations
Example: Let 𝐷 and 𝑆 be relations on 𝐴 = {1, 2, 3, 4}.

𝐷 = {(𝑎, 𝑏) | 𝑏 = 5 − 𝑎} “b equals (5 – a)”

𝑆 = {(𝑎, 𝑏) | 𝑎 < 𝑏} “a is smaller than b”

𝐷 = {(1, 4), (2, 3), (3, 2), (4, 1)}

𝑆 = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

S°D = {

Applied Discrete Mathematics @ Class #3: Relations38

(2, 4), (3, 3), (3, 4), (4, 2), (4, 3),
𝐷 maps an element a to the element (5 – 𝑎), and afterwards 𝑆 maps 
(5 – 𝑎) to all elements larger than (5 – a), resulting in :

𝑆 ∘ 𝐷 = {(𝑎, 𝑏) | 𝑏 > 5 – 𝑎} or 𝑆 ∘ 𝐷 = {(𝑎, 𝑏) | 𝑎 + 𝑏 > 5}.

(4, 4)}

38
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Combining Relations

We already know that functions are just special cases of relations 
(namely those that map each element in the domain onto exactly one 
element in the codomain).

If we formally convert two functions into relations, that is, write them 
down as sets of ordered pairs, the composite of these relations will be 
exactly the same as the composite of the functions (as defined earlier).

Applied Discrete Mathematics @ Class #3: Relations39

39

Combining Relations

Definition:
Let 𝑅 be a relation on the set 𝐴. The powers 𝑅% , 𝑛 = 1, 2, … , are 
defined inductively by:

𝑅# = 𝑅
𝑅%"# = 𝑅𝒏 ∘ 𝑅

In other words:
𝑅𝑛 = 𝑅°𝑅° … °𝑅 (n times the letter 𝑅)

Applied Discrete Mathematics @ Class #3: Relations40
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Combining Relations

Theorem: The relation 𝑅 on a set 𝐴 is transitive if and only if 𝑅$ Í 𝑅 for all positive 
integers 𝑛. 

Proof: 

We know that a relation 𝑅 on a set 𝐴 is transitive if whenever (𝑎, 𝑏)Î𝑅 and 
(𝑏, 𝑐)Î𝑅, then (𝑎, 𝑐)Î𝑅 for 𝑎, 𝑏, 𝑐Î𝐴. The composite of 𝑅 with itself with contains 
these pairs (𝑎, 𝑐). 
Therefore, for a transitive relation 𝑅, the 𝑅 ∘ 𝑅 does not contain any pairs that are 
not in 𝑅, so 𝑅°𝑅 Í 𝑅.

Since 𝑅°𝑅 does not introduce any pairs that are not already in 𝑅, it must also be 
true that 𝑅°𝑅 ∘ 𝑅 ⊆ 𝑅 , and so on, so that 𝑅𝒏 ⊆ 𝑅

Applied Discrete Mathematics @ Class #3: Relations41

41

Representing Relations

We already know different ways of representing relations. We will now take a 
closer look at two ways of representation: Zero-one matrices and directed graphs.

If 𝑅 is a relation from 𝐴 = {𝑎1, 𝑎2, … , 𝑎#} to 𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑛}, then 𝑅 can be 
represented by the zero-one matrix MR = [mij] with
• mij = 1,   if (ai, bj)ÎR, and
• mij = 0,  if (ai, bj)ÏR.

Note that for creating this matrix we first need to list the elements in A and B in a 
particular, but arbitrary order.

Applied Discrete Mathematics @ Class #3: Relations42
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Representing Relations

Example: How can we represent the relation 𝑅 from the set 𝐴 = {1, 2, 3} to the 
set 𝐵 = {1, 2} with 𝑅 = {(2, 1), (3, 1), (3, 2)} as a zero-one matrix?

Solution: The matrix MR is given by 

Applied Discrete Mathematics @ Class #3: Relations43

𝑀F =
0 0
1 0
1 1

43

Representing Relations

What do we know about the matrices representing a relation on a set (a relation 
from 𝐴 to 𝐴) ?
They are square matrices.

What do we know about matrices representing reflexive relations?

All the elements on the diagonal of such matrices 𝑀𝑟𝑒𝑓 must be 1s.

Applied Discrete Mathematics @ Class #3: Relations44

𝑀,-. =

1
1

.
.
.
1

44
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Representing Relations

What do we know about the matrices representing symmetric relations?

These matrices are symmetric, that is, 𝑀𝑅 = (𝑀F)𝑡.

Applied Discrete Mathematics @ Class #3: Relations45

𝑀/ =

1 0 1 1
0 1 0 0
1 0 0 1
1 0 1 1

symmetric matrix,
symmetric relation.

𝑀/ =

1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0

non-symmetric matrix,
non-symmetric relation.

45

Representing Relations

The Boolean operations join and meet (you remember?) can be used to determine 
the matrices representing the union and the intersection of two relations, 
respectively.

To obtain the join of two zero-one matrices, we apply the Boolean “or” function to 
all corresponding elements in the matrices.

To obtain the meet of two zero-one matrices, we apply the Boolean “and” function 
to all corresponding elements in the matrices.

Applied Discrete Mathematics @ Class #3: Relations46
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Representing Relations

Example: Let the relations 𝑅 and 𝑆 be represented by the matrices

Applied Discrete Mathematics @ Class #3: Relations47

𝑀/∪1 = 𝑀/ ∨ 𝑀1 =
1 0 1
1 1 1
1 1 0

𝑀1 =
1 0 1
0 1 1
1 0 0

What are the matrices representing 𝑅 ∪ 𝑆 and 𝑅 ∩ 𝑆?

Solution: These matrices are given by

𝑀/∩1 = 𝑀/ ∧ 𝑀1 =
1 0 1
0 0 0
0 0 0

𝑀/ =
1 0 1
1 0 0
0 1 0

47

Representing Relations Using Matrices

Do you remember the Boolean product of two zero-one matrices?

Let 𝐴 = [𝑎*+] be an 𝑚×𝑘 zero-one matrix and 𝐵 = [𝑏*+] be a 𝑘×𝑛
zero-one matrix.
Then the Boolean product of 𝐴 and 𝐵, denoted by 𝐴 ∘ 𝐵, is the 𝑚×𝑛
matrix with (i, j)th entry [𝑐*+], where:

𝑐𝑖𝑗 = 𝑎*# ∧ 𝑏#+ ∨ 𝑎*$ ∧ 𝑏$+ ∨ ⋯∨ (𝑎*D ∧ 𝑏D+).

𝑐𝑖𝑗 = 1 if and only if at least one of the terms (𝑎*% ∧ 𝑏%+) = 1 for 
some 𝑛; otherwise 𝑐𝑖𝑗 = 0.
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Representing Relations Using Matrices

Let us now assume that the zero-one matrices 
𝑀, = [𝑎-.], 𝑀/ = [𝑏-.] and 𝑀𝐶 = [𝑐𝑖𝑗] represent relations 𝐴, 𝐵, and 𝐶, respectively.

Remember: For 𝑀𝐶 = 𝑀, ∘ 𝑀/ we have:
𝑐𝑖𝑗 = 1 if and only if at least one of the terms (𝑎-0 ∧ 𝑏0.) = 1 for some 𝑛; 
otherwise 𝑐𝑖𝑗 = 0.

In terms of the relations, this means that 𝐶 contains a pair (𝑥- , 𝑧.) if and only if there is an 
element 𝑦𝑛 such that (𝑥- , 𝑦0) is in relation 𝐴 and (𝑦0, 𝑧.) is in relation 𝐵.

Therefore, 𝐶 = 𝐵 ∘ 𝐴 (composite of A and B).
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Representing Relations Using Matrices

This gives us the following rule:

𝑀E∘G = 𝑀G ∘ 𝑀E

In other words, the matrix representing the composite of relations 𝐴
and 𝐵 is the Boolean product of the matrices representing 𝐴 and 𝐵.

Analogously, we can find matrices representing the powers of 
relations:

𝑀𝑅𝑛 = 𝑀H
[%] (n-th Boolean power).
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Representing Relations Using Matrices

Example: Find the matrix representing 𝑅2, where the matrix representing 𝑅 is given 
by  
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𝑀F =
0 1 0
0 1 1
1 0 0

Solution: The matrix for 𝑅2 is given by

𝑀F6 = 𝑀F
[:] =

0 1 1
1 1 1
0 1 0

51

Representing Relations Using Digraphs

Definition: A directed graph, or digraph, consists of a set 𝑉 of vertices
(or nodes) together with a set 𝐸 of ordered pairs of elements of 𝑉
called edges (or arcs).

The vertex 𝑎 is called the initial vertex of the edge (𝑎, 𝑏), and the 
vertex 𝑏 is called the terminal vertex of this edge.

We can use arrows to display graphs.
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Representing Relations Using Digraphs

Example: Display the digraph with 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑}, 
𝐸 = {(𝑎, 𝑏), (𝑎, 𝑑), (𝑏, 𝑏), (𝑏, 𝑑), (𝑐, 𝑎), (𝑐, 𝑏), (𝑑, 𝑏)}.
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a
b

cd

An edge of the form (𝑏, 𝑏) is called a loop.
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Representing Relations Using Digraphs

Obviously, we can represent any relation 𝑅 on a set 𝐴 by the digraph 
with 𝐴 as its vertices and all pairs (𝑎, 𝑏)Î𝑅 as its edges.

Vice versa, any digraph with vertices 𝑉 and edges 𝐸 can be represented 
by a relation on 𝑉 containing all the pairs in 𝐸.

This one-to-one correspondence between relations and digraphs 
means that any statement about relations also applies to digraphs, and 
vice versa.
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Closures of Relations 
What is the closure of a relation?

Definition: Let 𝑅 be a relation on a set 𝐴. 𝑅 may or may not have some property P, 
such as reflexivity, symmetry, or transitivity.

If there is a relation 𝑆 that contains 𝑅 and has property 𝑃, and 𝑆 is a subset of every
relation that contains 𝑅 and has property 𝑃, then 𝑆 is called the closure of 𝑅 with 
respect to 𝑃.

Note that the closure of a relation with respect to a property may not exist.
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Closures of Relations 

Example 1: Find the reflexive closure of relation 𝑅 = {(1, 1), (1, 2), (2, 1), (3, 2)}
on the set 𝐴 = {1, 2, 3}.

Solution: We know that any reflexive relation on 𝐴 must contain the elements (1, 
1), (2, 2), and (3, 3).

By adding (2, 2) and (3, 3) to 𝑅, we obtain the reflexive relation 𝑆, which is given by
𝑆 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (3, 3)}.

𝑆 is reflexive, contains 𝑅, and is contained within every reflexive relation that 
contains 𝑅.
Therefore, 𝑆 is the reflexive closure of 𝑅.
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Closures of Relations 

Example 2: Find the symmetric closure of the relation 𝑅 = {(𝑎, 𝑏) | 𝑎 > 𝑏} on 
the set of positive integers.

Solution: The symmetric closure of 𝑅 is given by

𝑅 ∪ 𝑅K# = {(𝑎, 𝑏) | 𝑎 > 𝑏} ∪ {(𝑏, 𝑎) | 𝑎 > 𝑏} = {(𝑎, 𝑏) | 𝑎 ¹ 𝑏}
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Closures of Relations 

Example 3: Find the transitive closure of the relation 𝑅 =
{(1, 3), (1, 4), (2, 1), (3, 2)} on the set 𝐴 = {1, 2, 3, 4}. 

Solution: 𝑅 would be transitive, if for all pairs 
(𝑎, 𝑏) and (𝑏, 𝑐) in 𝑅 there were also a pair (𝑎, 𝑐) in 𝑅.

If we add the missing pairs (1, 2), (2, 3), (2, 4), and (3, 1), will 𝑅 be transitive?

No, because the extended relation 𝑅 contains (3, 1) and (1, 4), but does not 
contain (3, 4).

By adding new elements to R, we also add new requirements for its transitivity. We 
need to look at paths in digraphs to solve this problem.
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Closures of Relations 

Imagine that we have a relation 𝑅 that represents all train connections in the US.

For example, if (Boston, Philadelphia) is in 𝑅, then there is a direct train connection 
from Boston to Philadelphia.

If 𝑅 contains (Boston, Philadelphia) and (Philadelphia, Washington), there is an 
indirect connection from Boston to Washington.

Because there are indirect connections, it is not possible by just looking at 𝑅 to 
determine which cities are connected by trains. 

The transitive closure of 𝑅 contains exactly those pairs of cities that are connected, 
either directly or indirectly.
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Closures of Relations 

Definition: A path from 𝑎 to 𝑏 in the directed graph 𝐺 is a sequence of one or more 
edges (𝑥0, 𝑥1), (𝑥1, 𝑥2), (𝑥2, 𝑥3), … , (𝑥$L%, 𝑥$) in 𝐺, where 𝑥0 = 𝑎 and 𝑥$ = 𝑏.

In other words, a path is a sequence of edges where the terminal vertex of an edge 
is the same as the initial vertex of the next edge in the path.

This path is denoted by 𝑥0, 𝑥1, 𝑥2, … , 𝑥$ and has length 𝑛.
A path that begins and ends at the same vertex is called a circuit or cycle.
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Closures of Relations 

Example: Let us take a look at the following graph:
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a
b

cd
Is c,a,b,d,b a path in this graph? Yes.

Is d,b,b,b,d,b,d a circuit in this graph? Yes.

Is there any circuit including c in this graph? No.
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Closures of Relations 

Due to the one-to-one correspondence between graphs and relations, we can 
transfer the definition of path from graphs to relations:

Definition: There is a path from 𝑎 to 𝑏 in a relation 𝑅, if there is a sequence of 
elements 𝑎, 𝑥1, 𝑥2, … , 𝑥$L%, 𝑏 with (𝑎, 𝑥1)Î𝑅, (𝑥1, 𝑥2)Î𝑅,… , and (𝑥$L%, 𝑏)Î𝑅.

Theorem: Let 𝑅 be a relation on a set 𝐴. There is a path from 𝑎 to 𝑏 if and only if 
(𝑎, 𝑏)Î𝑅𝑛 for some positive integer 𝑛.
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Closures of Relations 

According to the train example, the transitive closure of a relation consists of the 
pairs of vertices in the associated directed graph that are connected by a path.

Definition: Let 𝑅 be a relation on a set 𝐴. The connectivity relation 𝑅∗ consists of 
the pairs (𝑎, 𝑏) such that there is a path between 𝑎 and 𝑏 in 𝑅. 

We know that 𝑅𝑛 consists of the pairs (𝑎, 𝑏) such that a and b are connected by a 
path of length n.

Therefore, 𝑅∗ is the union of 𝑅𝑛 across all positive integers 𝑛:
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𝑅∗ =L
$"#

8

𝑅$ = 𝑅# ∪ 𝑅( ∪ 𝑅9 ∪. . .
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Closures of Relations 

Theorem: The transitive closure of a relation R equals the connectivity relation 𝑅∗.

But how can we compute 𝑅∗ ?

Lemma: Let 𝐴 be a set with n elements, and let 𝑅 be a relation on 𝐴. If there is a 
path in 𝑅 from 𝑎 to 𝑏, then there is such a path with length not exceeding 𝑛.

Moreover, if 𝑎 ¹ 𝑏 and there is a path in 𝑅 from 𝑎 to 𝑏, then there is such a path 
with length not exceeding (𝑛 – 1).
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Closures of Relations 

This lemma is based on the observation that if a path from a to b visits any vertex 
more than once, it must include at least one circuit. 

These circuits can be eliminated from the path, and the reduced path will still 
connect a and b.

Theorem: For a relation 𝑅 on a set 𝐴 with 𝑛 elements, the transitive closure 𝑅∗ is 
given by:

𝑅∗ = 𝑅È𝑅2È𝑅3È…È𝑅$

For matrices representing relations we have:
𝑀F∗ = 𝑀FÚ𝑀F

: Ú𝑀F
N Ú…Ú𝑀F

[$]
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Closures of Relations 

Let us finally solve Example 3 by finding the transitive closure of the relation 𝑅 =
{(1, 3), (1, 4), (2, 1), (3, 2)} on the set 𝐴 = {1, 2, 3, 4}. 

R can be represented by the following matrix 𝑀𝑅:
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𝑀F =

0 0 1 1
1 0 0 0
0 1 0 0
0 0 0 0
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Closures of Relations 

Applied Discrete Mathematics @ Class #3: Relations67

𝑀/ =

0 0 1 1
1 0 0 0
0 1 0 0
0 0 0 0

𝑀/
[(] =

0 1 0 0
0 0 1 1
1 0 0 0
0 0 0 0

𝑀/
[9] =

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0

𝑀/
[<] =

0 0 1 1
1 0 0 0
0 1 0 0
0 0 0 0

𝑀/∗ = 𝑀/ ∨ 𝑀/
[(] ∨ 𝑀/

[9] ∨ 𝑀/
[<] =

1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 0
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Closures of Relations 

Solution:

The transitive closure of the relation
𝑅 = {(1, 3), (1, 4), (2, 1), (3, 2)} on the set 𝐴 = {1, 2, 3, 4} is given by the relation:
{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4)}

Applied Discrete Mathematics @ Class #3: Relations68

𝑀/∗ = 𝑀/ ∨ 𝑀/
[(] ∨ 𝑀/

[9] ∨ 𝑀/
[<] =

1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 0
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Partial Orderings  

Sometimes, relations define an order on the elements in a set.

Definition: A relation 𝑅 on a set 𝑆 is called a partial ordering or partial order if it is 
reflexive, antisymmetric, and transitive. 

A set 𝑆 together with a partial ordering 𝑅 is called a partially ordered set, or poset, 
and is denoted by (𝑆, 𝑅).
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Partial Orderings

Example: Consider the “greater than or equal” relation ³ (defined by 
{(𝑎, 𝑏) | 𝑎 ³ 𝑏}).

Is ³ a partial ordering on the set of integers?

• ³ is reflexive, because a ³ a for every integer a.

• ³ is antisymmetric, because if a ¹ b, then a ³ b Ù b ³ a is false.

• ³ is transitive, because if a ³ b and b ³ c, then a ³ c.

Consequently, (𝑍, ³) is a partially ordered set.

Applied Discrete Mathematics @ Class #3: Relations70

70



7/25/22

36

Partial Orderings  

Another example: Is the “inclusion relation” Í a partial ordering on the power set 
of a set 𝑆?

Í is reflexive, because 𝐴 Í 𝐴 for every set 𝐴.

Í is antisymmetric, because if 𝐴 ¹ 𝐵, then 𝐴 Í 𝐵 Ù 𝐵 Í 𝐴 is false.

Í is transitive, because if 𝐴 Í 𝐵 and 𝐵 Í 𝐶, then 𝐴 Í 𝐶.

Consequently, (𝑃(𝑆),Í) is a partially ordered set.
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Partial Orderings  

In a poset the notation 𝑎 £ 𝑏 denotes that (𝑎, 𝑏)Î𝑅.

Note that the symbol £ is used to denote the relation in any poset, not just the 
“less than or equal” relation.

The notation 𝑎 < 𝑏 denotes that 𝑎 £ 𝑏, but 𝑎 ¹ 𝑏.

If 𝑎 < 𝑏 we say “a is less than b” or “b is greater than a”.
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Partial Orderings  

For two elements 𝑎 and 𝑏 of a poset (𝑆, £) it is possible that neither 𝑎 £ 𝑏 nor 
𝑏 £ 𝑎.

Example: In (𝑃(𝑍),Í), {1, 2} is not related to {1, 3}, and vice versa, since neither is 
contained within the other.

Definition: The elements 𝑎 and 𝑏 of a 𝑝𝑜𝑠𝑒𝑡 (𝑆, £) are called comparable if either 
𝑎 £ 𝑏 or 𝑏 £ 𝑎. When 𝑎 and 𝑏 are elements of 𝑆 such that neither 𝑎 £ 𝑏 nor 𝑏 £ 𝑎, 
then 𝑎 and 𝑏 are called incomparable.
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Partial Orderings  

For some applications, we require all elements of a set to be comparable.

For example, if we want to write a dictionary, we need to define an order on all
English words (alphabetic order).

Definition: If (𝑆, £) is a poset and every two elements of 𝑆 are comparable, 𝑆 is 
called a totally ordered or linearly ordered set, and £ is called a total order or 
linear order. A totally ordered set is also called a chain.
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Partial Orderings  

Example 1: Is (𝑍, £) a totally ordered set?

Yes, because 𝑎 £ 𝑏 or 𝑏 £ 𝑎 for all integers a and b.

Example 2: Is (𝑍+, |) a totally ordered set?

No, because it contains incomparable elements such as 5 and 7.
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Equivalence Relations 

Equivalence relations are used to relate objects that are similar in some way.

Definition: A relation on a set 𝐴 is called an equivalence relation if it is reflexive, 
symmetric, and transitive.

Two elements that are related by an equivalence relation 𝑅 are called equivalent.
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Equivalence Relations 

Since 𝑅 is symmetric, a is equivalent to b whenever b is equivalent to a.

Since 𝑅 is reflexive, every element is equivalent to itself.

Since 𝑅 is transitive, if a and b are equivalent and b and c are equivalent, then a 
and c are equivalent.

Obviously, these three properties are necessary for a reasonable definition of 
equivalence.
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Equivalence Relations 
Example: Suppose that 𝑅 is the relation on the set of strings that consist of English letters 
such that 𝑎𝑅𝑏 if and only if 𝑙(𝑎) = 𝑙(𝑏), where 𝑙(𝑥) is the length of the string 𝑥. Is 𝑅 an 
equivalence relation?

Solution:
𝑅 is, because 𝑙(𝑎) = 𝑙(𝑎) and therefore 𝑎𝑅𝑎 for any string 𝑎.

𝑅 is symmreflexiveetric, because if 𝑙(𝑎) = 𝑙(𝑏) then 𝑙(𝑏) = 𝑙(𝑎), so if 𝑎𝑅𝑏 then 𝑏𝑅𝑎.
𝑅 is transitive, because if 𝑙(𝑎) = 𝑙(𝑏) and 𝑙(𝑏) = 𝑙(𝑐),   then 𝑙(𝑎) = 𝑙(𝑐), so 𝑎𝑅𝑏 and 𝑏𝑅𝑐

implies 𝑎𝑅𝑐.

𝑅 is an equivalence relation.
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Equivalence Classes 

Definition: Let 𝑅 be an equivalence relation on a set 𝐴. The set of all elements that 
are related to an element 𝑎 of 𝐴 is called the equivalence class of 𝑎. 

The equivalence class of a with respect to 𝑅 is denoted by [𝒂]𝑹

When only one relation is under consideration, we will delete the subscript 𝑅 and 
write [𝒂] for this equivalence class.

If 𝑏Î[𝑎]𝑅, 𝑏 is called a representative of this equivalence class.
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Equivalence Classes 

Example: In the previous example (strings of identical length), what is the 
equivalence class of the word mouse, denoted by [mouse] ?

Solution: [mouse] is the set of all English words containing five letters.

For example, ‘horse’ would be a representative of this equivalence class.
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Equivalence Classes 
Theorem: Let 𝑅 be an equivalence relation on 𝑎 set 𝐴. The following statements are 
equivalent:

(i) 𝑎𝑅𝑏
(ii) [𝑎] = [𝑏]
(iii) [𝑎]Ç [𝑏] ¹ Æ

Reminder: A partition of a set 𝑆 is a collection of disjoint nonempty subsets of 𝑆 that have 
𝑆 as their union. In other words, the collection of subsets 𝐴𝑖, 𝑖Î𝐼, forms a partition of 𝑆 if 
and only if

(i)   𝐴𝑖 ¹ Æ for 𝑖Î𝐼
(ii) 𝐴𝑖 Ç 𝐴𝑗 = Æ, if 𝑖 ¹ 𝑗
(iii) È𝑖Î𝐼 𝐴- = 𝑆
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Equivalence Classes 

Theorem: Let 𝑅 be an equivalence relation on a set 𝑆. Then the equivalence 

classes of 𝑅 form a partition of 𝑆. Conversely, given a partition {𝐴9 | 𝑖Î𝐼} of the set 

𝑆, there is an equivalence relation 𝑅 that has the sets 𝐴𝑖, 𝑖Î𝐼, as its equivalence 

classes.
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Equivalence Classes 

Example: Let us assume that Frank, Suzanne and George live in Boston, Stephanie 
and Max live in Lübeck, and Jennifer lives in Sydney. 

Let 𝑅 be the equivalence relation {(𝑎, 𝑏) | 𝑎 and 𝑏 live in the same city} on the set 
𝑃 = {Frank, Suzanne, George, Stephanie, Max, Jennifer}.

Then 𝑅 = {(Frank, Frank), (Frank, Suzanne), (Frank, George), (Suzanne, Frank), 
(Suzanne, Suzanne), (Suzanne, George), (George, Frank),
(George, Suzanne), (George, George), (Stephanie,
Stephanie), (Stephanie, Max), (Max, Stephanie),
(Max, Max), (Jennifer, Jennifer)}.
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Equivalence Classes 

Then the equivalence classes of 𝑅 are:

{{Frank, Suzanne, George}, {Stephanie, Max}, {Jennifer}}.

This is a partition of 𝑃.

The equivalence classes of any equivalence relation 𝑅 defined on a set 𝑆 constitute 
a partition of 𝑆, because every element in 𝑆 is assigned to exactly one of the 
equivalence classes.
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Equivalence Classes 

Another example: Let 𝑅 be the relation 
{(𝑎, 𝑏) | 𝑎 º 𝑏 (𝑚𝑜𝑑 3)} on the set of integers.

Is 𝑅 an equivalence relation?

Yes, 𝑅 is reflexive, symmetric, and transitive.

What are the equivalence classes of 𝑅 ?
{{… ,−6,−3, 0, 3, 6, … },
{… ,−5,−2, 1, 4, 7, … },
{… ,−4,−1, 2, 5, 8, … }}

Again, these three classes form a partition of the set of integers.
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n-ary Relations

In order to study an interesting application of relations, namely databases, we first 
need to generalize the concept of binary relations to n-ary relations.

Definition: Let 𝐴1, 𝐴2, … , 𝐴𝑛 be sets. An n-ary relation on these sets is a subset of 
𝐴1´𝐴2´…´𝐴𝑛.

The sets 𝐴1, 𝐴2, … , 𝐴𝑛 are called the domains of the relation, and n is called its 
degree.
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n-ary Relations
Example:
Let 𝑅 = {(𝑎, 𝑏, 𝑐) | 𝑎 = 2𝑏 Ù 𝑏 = 2𝑐 with 𝑎, 𝑏, 𝑐Îℤ}

What is the degree of 𝑅?
The degree of 𝑅 is 3, so its elements are triples.

What are its domains?
Its domains are all equal to the set of integers.

Is (2, 4, 8) in 𝑅?
No.

Is (4, 2, 1) in 𝑅?
Yes.
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