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Recurrence Relations
Section 8.2 - 8.3 in the textbook

1

Recurrence Relations
A recurrence relation for the sequence {𝑎!} is an equation that expresses 𝑎𝑛 is 
terms of one or more of the previous terms of the sequence, namely, 
𝑎0, 𝑎1, … , 𝑎!"#, for all integers 𝑛 with 𝑛 ³ 𝑛0, where n0 is a nonnegative integer.

A sequence is called a solution of a recurrence relation if its terms satisfy the 
recurrence relation.
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Recurrence Relations
In other words, a recurrence relation is like a recursively defined sequence, but 
without specifying any initial values (initial conditions).

Therefore, the same recurrence relation can have (and usually has) multiple 
solutions.

If both the initial conditions and the recurrence relation are specified, then the 
sequence is uniquely determined.
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Recurrence Relations
Example: Consider the recurrence relation 𝑎𝑛 = 2𝑎!"#– 𝑎!"$

for 𝑛 = 2, 3, 4, …

Is the sequence {𝑎!} with 𝑎𝑛 = 3𝑛 a solution of this recurrence relation?

For 𝑛 ³ 2 we see that 
2𝑎!"#– 𝑎!"$ = 2(3(𝑛 – 1)) – 3(𝑛 – 2) = 3𝑛 = 𝑎!.

Therefore, {𝑎!} with 𝑎𝑛 = 3𝑛 is a solution of the recurrence relation.
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Recurrence Relations
𝑎𝑛 = 2𝑎!"#– 𝑎!"$ for 𝑛 = 2, 3, 4, …

Is the sequence {𝑎!} with 𝑎! = 5 a solution of the same recurrence relation?

For 𝑛 ³ 2 we see that:
2𝑎!"#– 𝑎!"$ = 2×5 − 5 = 5 = 𝑎!.

Therefore, {𝑎!} with 𝑎𝑛 = 5 is also a solution of the recurrence relation.
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Modeling with Recurrence Relations
Example:

Someone deposits $10,000 in a savings account at a bank yielding 5% per year with 
interest compounded annually. How much money will be in the account after 30 
years?

Solution:

Let 𝑃! denote the amount in the account after 𝑛 years.

How can we determine 𝑃! on the basis of 𝑃!"#?
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Modeling with Recurrence Relations
We can derive the following recurrence relation:

𝑃! = 𝑃!"# + 0.05𝑃!"# = 1.05𝑃!"#.
The initial condition is 𝑃$ = 10,000.

Then we have:
𝑃1 = 1.05𝑃0
𝑃2 = 1.05𝑃1 = (1.05)2𝑃0
𝑃3 = 1.05𝑃2 = (1.05)3𝑃0
…
𝑃𝑛 = 1.05𝑃!"# = (1.05)𝑛𝑃0

We now have a formula to calculate 𝑃𝑛 for any natural number 𝑛 and can 
avoid the iteration.
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Modeling with Recurrence Relations
Let us use this formula to find 𝑃&' under the
initial condition 𝑃' = 10,000:

𝑃&' = 1.05 &'×10,000 = 43,219.42

After 30 years, the account contains $43,219.42.
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Modeling with Recurrence Relations
Another example:

Let 𝑎! denote the number of bit strings of length 𝑛 that do not have two 
consecutive 0s (“valid strings”). Find a recurrence relation and give initial conditions 
for the sequence {𝑎!}.

Solution:

Idea: The number of valid strings equals the number of valid strings ending with a 0
plus the number of valid strings ending with a 1.
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Modeling with Recurrence Relations
Let us assume that 𝑛 ³ 3, so that the string contains at least 3 bits.

Let us further assume that we know the number 𝑎!"#of valid strings of length 
(𝑛– 1) and the number 𝑎!"$ of valid strings of length (𝑛– 2).
Then how many valid strings of length 𝑛 are there, if the string ends with a 1?

There are 𝑎!"# such strings, namely the set of valid strings of length (𝑛 – 1) with a 
1 appended to them.

Note: Whenever we append a 1 to a valid string, that string remains valid.
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Modeling with Recurrence Relations
Now we need to know: How many valid strings of length n are there, if the string 
ends with a 0?

Valid strings of length n ending with a 0 must have a 1 as their (n – 1)st bit
(otherwise they would end with 00 and would not be valid).

And what is the number of valid strings of length (𝑛 – 1) that end with a 1?

We already know that there are 𝑎!"# strings of length n that end with a 1.

Therefore, there are 𝑎!"$ strings of length (𝑛 – 1) that end with a 1.
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Modeling with Recurrence Relations
So there are 𝑎!"$ valid strings of length n that end with a 0 (all valid strings of 
length (n – 2) with 10 appended to them).

As we said before, the number of valid strings is the number of valid strings ending 
with a 0 plus the number of valid strings ending with a 1.

That gives us the following recurrence relation:
𝑎! = 𝑎!"# + 𝑎!"$
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Modeling with Recurrence Relations
What are the initial conditions?

a1 = 2 (0 and 1)
a2 = 3 (01, 10, and 11)
a3 = a2 + a1 = 3 + 2 = 5
a4 = a3 + a2 = 5 + 3 = 8
a5 = a4 + a3 = 8 + 5 = 13
…
This sequence satisfies the same recurrence relation as  the Fibonacci sequence.
Since a1 = f3 and a2 = f4, we have an = fn+2.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion13

13

Solving Recurrence Relations
In general, we would prefer to have an explicit  formula to compute the value of an
rather than conducting n iterations.

For one class of recurrence relations, we can obtain such formulas in a systematic 
way.

Those are the recurrence relations that express the terms of a sequence as linear 
combinations of previous terms.
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Solving Recurrence Relations
Definition: A linear homogeneous recurrence relation of degree 𝑘 with constant 
coefficients is a recurrence relation of the form:

an = c1an-1 + c2an-2 + … + ckan-k,
Where c1, c2, …, ck are real numbers, and ck ¹ 0. 

A sequence satisfying such a recurrence relation is uniquely determined by the 
recurrence relation and the k initial conditions

a0 = C0, a1 = C1, a2 = C2, …, ak-1 = Ck-1.
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Solving Recurrence Relations
Examples:
The recurrence relation Pn = (1.05)Pn-1

is a linear homogeneous recurrence relation of degree one.

The recurrence relation fn = fn-1 + fn-2

is a linear homogeneous recurrence relation of degree two.

The recurrence relation an = an-5

is a linear homogeneous recurrence relation of degree five.
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Solving Recurrence Relations
Basically, when solving such recurrence relations, we try to find solutions of the 
form 𝒂𝒏 = 𝒓𝒏, where 𝑟 is a constant, 𝑎! = 𝑟! is a solution of the recurrence 
relation 𝑎! = 𝑐#𝑎!"# + 𝑐$𝑎!"$ +⋯+ 𝑐)𝑎!") if and only if 

𝑟! = 𝑐#𝑟!"# + 𝑐$𝑟!"$ +⋯+ 𝑐)𝑟!").

Divide this equation by rn-k and subtract the right-hand side from the left:

𝑟) − 𝑐#𝑟)"# + 𝑐$𝑟)"$ +⋯+ 𝑐) = 0

This is called the characteristic equation of the recurrence relation.
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Solving Recurrence Relations
The solutions of this equation are called the characteristic roots of the recurrence 
relation.

Let us consider linear homogeneous recurrence relations of degree two.

Theorem: Let 𝑐1 and 𝑐2 be real numbers. Suppose that 𝑟$– 𝑐#𝑟– 𝑐$ = 0 has two 
distinct roots 𝑟1 and 𝑟2. Then the sequence {𝑎𝑛} is a solution of the recurrence 
relation 𝑎! = 𝑐#𝑎!"# + 𝑐$𝑎!"$ ↔ 𝑎! = 𝛼#𝑟#! + 𝛼$𝑟$! for 𝑛 = 0, 1, 2, … , where 
𝛼# and 𝛼$ are constants.

The proof is shown on pp. 542-543 of the textbook
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Solving Recurrence Relations
Example: What is the solution of the recurrence relation 

an = an-1 + 2an-2 where  n≥ 2 
a0 = 2
a1 = 7 ?

Solution:
The characteristic equation of the recurrence relation is r2 – r – 2 = 0.
Its roots are r = 2 and r = -1.
Hence, the sequence {an} is a solution to the recurrence relation if and only if:

an = a12n + a2(-1)n for some constants a1 and a2.
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Solving Recurrence Relations
Given the equation an = a12n + a2(-1)n and the initial conditions a0 = 2 and a1 = 7, it 
follows that:
a0 = 2 = a1 + a2

a1 = 7 = a1×2 + a2 ×(-1)

Solving these two equations gives us
a1 = 3 and a2 = -1.

Therefore, the solution to the recurrence relation and initial conditions is the 
sequence {an} with an = 3×2n – (-1)n. 
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Solving Recurrence Relations
Another Example: Give an explicit formula for the Fibonacci numbers.

Solution:

The Fibonacci numbers satisfy the recurrence relation fn = fn-1 + fn-2 with initial 
conditions f0 = 0 and f1 = 1.

The characteristic equation is r2 – r – 1 = 0.

Its roots are 𝑟# =
#* +
$ , 𝑟$ =

#" +
$
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Solving Recurrence Relations
Therefore, the Fibonacci numbers are given by:

𝑓! = 𝛼#
#* +
$

!
+ 𝛼$

#" +
$

!
for some 𝛼# and 𝛼$

We can determine values for these constants so that the sequence meets the 
conditions f0 = 0 and f1 = 1: 

𝑓' = 𝛼# + 𝛼$ = 0

𝑓# = 𝛼#
1 + 5
2 + 𝛼$

1 − 5
2 = 1
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Solving Recurrence Relations
The unique solution to this system of two equations and two variables is

𝛼# =
1
5
, 𝛼$ = −

1
5

So finally, we obtained an explicit formula for the Fibonacci numbers: 

𝑓! =
1
5
1 + 5
2

!

−
1
5
1 − 5
2

!
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Solving Recurrence Relations
But what happens if the characteristic equation has only one root?

How can we then match our equation with the initial conditions a0 and a1 ?

Theorem: Let 𝑐1 and 𝑐2 be real numbers with 𝑐$ ≠ 0. Suppose that 𝑟$– 𝑐#𝑟– 𝑐$ =
0 has only one roots 𝑟0. The sequence {𝑎!} is a solution of the recurrence relation 
𝑎! = 𝑐#𝑎!"# + 𝑐$𝑎!"$ ↔ 𝑎! = 𝛼#𝑟'! + 𝛼$𝑛𝑟'! for 𝑛 = 0, 1, 2, … , where 𝛼# and 𝛼$
are constants 
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Solving Recurrence Relations
Example: What is the solution of the recurrence relation an = 6an-1 – 9an-2 with a0 = 
1 and a1 = 6?

Solution:
The only root of r2 – 6r + 9 = 0 is r0 = 3. Hence, the solution to the recurrence 
relation is an = a13n + a2n3n for some constants a1 and a2. 
To match the initial condition, we need:

a0 = 1 = a1
a1 = 6 = a1×3 + a2×3

Solving these equations yields a1 = 1 and a2 = 1.
Consequently, the overall solution is given by an = 3n + n3n.
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Divide-and-Conquer Relations
Some algorithms take a problem and successively divide it into one or more 
smaller problems until there is a trivial solution to them.

For example, the binary search algorithm recursively divides the input into two 
halves and eliminates the irrelevant half until only one relevant element remained.

This technique is called “divide and conquer”.

We can use recurrence relations to analyze the complexity of such algorithms.
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Divide-and-Conquer Relations
Suppose that an algorithm divides a problem (input) of size n into a subproblems, 

where each subproblem is of size !,. Assume that 𝑔(𝑛) operations are performed 
for such a division of a problem.

Then, if 𝒇(𝒏) represents the number of operations required to solve the problem, 
it follows that f satisfies the recurrence relation

𝒇(𝒏) = 𝒂𝒇(𝒏𝒃) + 𝒈(𝒏).

This is called a divide-and-conquer recurrence relation.
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Divide-and-Conquer Relations
Example: The binary search algorithm reduces the search for an element in a 
search sequence of size 𝒏 to the binary search for this element in a search 

sequence of size 𝒏
𝟐

(if n is even).

Two comparisons are needed to perform this reduction.

Hence, if 𝒇(𝒏) is the number of comparisons required to search for an element in a 

search sequence of size n, then 𝒇(𝒏) = 𝒇 𝒏
𝟐 + 𝟐 if n is even.
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Divide-and-Conquer Relations
Usually, we do not try to solve such divide-and conquer relations, but we use them to 
derive a  big-O estimate for the complexity of an algorithm.

Theorem: Let 𝑓 be an increasing function that satisfies the recurrence relation 

𝑓(𝑛) = 𝑎𝑓(
𝑛
𝑏) + 𝑐𝑛%

whenever 𝑛 = 𝑏&, where 𝑘 is a positive integer, 𝑎, 𝑐, and 𝑑 are real numbers with a ³ 1, 
and 𝑏 is an integer greater than 1. Then 𝑓(𝑛) is 
𝑂(𝑛%), if a < bd,
𝑂(𝑛% log 𝑛) if a = bd,
𝑂(𝑛'()* *) if a > bd
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Divide-and-Conquer Relations
Example:

For binary search, we have:  𝑓(𝑛) = 𝑓(!$) + 2, so 𝑎 = 1, 𝑏 = 2, and 𝑑 = 0
(d = 0 because here, 𝑔(𝑛) does not depend on 𝑛).

Consequently, a = bd, and therefore,  𝑓(𝑛) is O(nd log n) = O(log n).

The binary search algorithm has logarithmic time complexity.
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Algorithms
Chapter 3 in the textbook

31

Algorithms 

What is an algorithm?

An algorithm is a finite set of precise instructions for performing a computation or 
for solving a problem.

This is a rather vague definition. You will get to know a more precise and 
mathematically useful definition when you attend CS420 or CS620. 

But this one is good enough for now…
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Algorithms
Properties of algorithms:
• Input from a specified set,
• Output from a specified set (solution),

• Definiteness of every step in the computation,

• Correctness of output for every possible input,

• Finiteness of the number of calculation steps,

• Effectiveness of each calculation step and

• Generality for a class of problems.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion33
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Algorithm Examples
We will use a pseudocode to specify algorithms, which slightly reminds us of Basic
and Pascal.

Example: an algorithm that finds the maximum element in a finite sequence
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Algorithm Examples
Another example: a linear search algorithm, that is, an algorithm that linearly 
searches a sequence for a particular element.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion35
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Algorithm Examples
If the terms in a sequence are ordered, a binary search algorithm is more efficient 
than linear search.

The binary search algorithm iteratively restricts the relevant search interval until it 
closes in on the position of the element to be located.
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Algorithm Examples

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion37

a  c  d  f  g  h  j  l  m  o  p  r  s  u  v  x  z

binary search for the letter ‘j’

center element

search interval

37

Algorithm Examples
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a  c  d  f  g  h  j  l  m  o  p  r  s  u  v  x  z

center element

search interval

binary search for the letter ‘j’
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Algorithm Examples

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion39

a  c  d  f  g  h  j  l  m  o  p  r  s  u  v  x  z

center element

search interval

binary search for the letter ‘j’

39

Algorithm Examples
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a  c  d  f  g  h j  l  m o  p  r  s  u  v  x  z

center element

search interval

binary search for the letter ‘j’

Found!
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Algorithm Examples

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion41
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Algorithm Examples
Obviously, on sorted sequences, binary search is more efficient than linear search.

How can we analyze the efficiency of algorithms?

We can measure the 
• time (number of elementary computations) and
• space (number of memory cells) that the algorithm requires.

These measures are called computational complexity and space complexity, 
respectively.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion42
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Complexity
What is the time complexity of the linear search algorithm?

We will determine the worst-case number of comparisons as a function of the 
number n of terms in the sequence.

The worst case for the linear algorithm occurs when the element to be located is 
not included in the sequence.

In that case, every item in the sequence is compared to the element to be located.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion43
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Algorithm Examples
Here is the linear search algorithm again:

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion44
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Algorithm Examples
Here is the linear search algorithm again:
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Is processed n times, requiring 2n 
comparisons. When it is entered for 
the (n+1)th time, only the 
comparison i £ n is executed and 
terminates the loop

Finally, this comparison is excuted, 
so in the worst-case, the time 
complexity is (2n+2)

45

Reminder: Binary Search Algorithm

What is the time complexity of the algorithm?

Again, we will determine the worst-case number of comparisons as a function of the 
number 𝑛 of terms in the sequence.
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Complexity-Binary Search Algorithm
• Let us assume there are 𝑛 = 2𝑘 elements in the list, which means that 𝑘 = log 𝑛.
• If 𝑛 is not a power of 2, it can be considered part of a larger list, where 2) < 𝑛 <
2)*#.
• In the first cycle of the loop

üThe search interval is restricted to 2&,- elements, 
üUsing 2 comparisons

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion47
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Complexity-Binary Search Algorithm

• In the second cycle of the loop
üThe search interval is restricted to 2&,. elements, 
üUsing 2 comparisons (again)

• … this is repeated until only 1 (2') element left in the search interval
üAt this point, 2k comparisons has been conducted
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Complexity
Then, the comparison 

𝑤ℎ𝑖𝑙𝑒 (𝑖 < 𝑗)
exits the loop, and a final comparison

𝑖𝑓 𝑥 = 𝑎/ 𝑡ℎ𝑒𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∶= 𝑖

determines whether the element was found.

Therefore, the overall time complexity of the binary search algorithm is:
2𝑘 + 2 = 2élog 𝑛ù+ 2.
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Complexity
In general, we are not so much interested in the time and space complexity for 
small inputs.

For example, while the difference in time complexity between linear and binary 
search is meaningless for a sequence with 𝑛 = 10, it is gigantic for 𝑛 = 230.

For example, let us assume two algorithms A and B that solve the same class of 
problems.

The time complexity of A is 5,000𝑛, the one for B is é1.1𝑛ù for an input with 𝑛
elements.
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Complexity
Comparison: time complexity of algorithms A and B

This means that algorithm B cannot be used for large inputs, while running algorithm A is 
still feasible.
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Algorithm A Algorithm BInput Size

n

10

100

1,000

1,000,000

5,000n

50,000

500,000

5,000,000

5 ⋅ 109

é1.1𝑛ù

3

2.5 ⋅ 1041

13,781

4.8 ⋅ 1041392

51

Complexity
So what important is the growth of the complexity functions.

The growth of time and space complexity with increasing input size 𝑛 is a suitable 
measure for the comparison of algorithms. 

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion52
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The Growth of Functions
The growth of functions is usually described using the big-O notation.

Definition: Let 𝑓 and 𝑔 be functions from the integers or the real numbers to the 
real numbers. We say that 𝑓(𝑥) is 𝑶(𝑔(𝑥)) if there are constants 𝐶 and 𝑘 such that

|𝑓(𝑥)| £ 𝐶|𝑔(𝑥)|, whenever 𝑥 > 𝑘.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion53
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The Growth of Functions
When we analyze the growth of complexity 
functions, 𝑓(𝑥) and 𝑔(𝑥) are always positive. 

Therefore, we can simplify the big-O requirement 
to

𝑓(𝑥) £ 𝐶×𝑔(𝑥) whenever 𝑥 > 𝑘.

If we want to show that 𝑓(𝑥) is 𝑶(𝑔(𝑥)), we only 
need to find one pair (𝐶, 𝑘) (which is never 
unique).

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion54
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The Growth of Functions
The idea behind the big-O notation is to establish an upper boundary for the 
growth of a function 𝑓(𝑥) for large 𝑥.

This boundary is specified by a function 𝑔(𝑥) that is usually much simpler than 
𝑓(𝑥).

We accept the constant 𝐶 in the requirement

𝑓(𝑥) £ 𝐶×𝑔(𝑥) whenever 𝑥 > 𝑘,

because 𝑪 does not grow with 𝒙

We are only interested in large 𝑥, so it is OK if 𝑓(𝑥) > 𝐶×𝑔(𝑥) for 𝑥 £ 𝑘.
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The Growth of Functions
Example: Show that 𝑓(𝑥) = 𝑥2 + 2𝑥 + 1 is 𝑶(𝑥2).

For 𝑥 > 1 we have:
𝑥2+ 2𝑥 + 1 £ 𝑥2+ 2𝑥2+ 𝑥2
Þ 𝑥2 + 2𝑥 + 1 £ 4𝑥2

Therefore, for 𝐶 = 4 and 𝑘 = 1:
𝑓(𝑥) £ 𝐶𝑥2 whenever 𝑥 > 𝑘.
Þ 𝑓(𝑥) 𝑖𝑠 𝑂(𝑥2).

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion56
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The Growth of Functions
Question: If 𝑓(𝑥) is 𝑶(𝑥2), is it also 𝑶(𝑥3)?

Yes. 𝑥3 grows faster than 𝑥2, so 𝑥3 grows also faster than 𝑓(𝑥).

Therefore, we always have to find the smallest simple function 𝑔(𝑥) for which 𝑓(𝑥)
is 𝑶(𝑔(𝑥))
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The Growth of Functions
“Popular” functions g(n) are:

• 𝑛𝑙𝑜𝑔𝑛, 1, 2𝑛, 𝑛2, 𝑛!, 𝑛, 𝑛3, log 𝑛

Listed from slowest to fastest growth:
• 1
• log n
• n
• n log n
• n2

• n3

• 2n

• n!
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The Growth of Functions

A problem that can be solved with polynomial worst-case complexity is called 
tractable.

Problems of higher complexity are called intractable.

Problems that no algorithm can solve are called unsolvable.

More about this in CS420.
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Useful Rules for Big-O
For any polynomial 𝑓(𝑥) = 𝑎!𝑥! + 𝑎!"#𝑥!"# +⋯+ 𝑎', where 𝑎0, 𝑎1, … , 𝑎! are 
real numbers, 𝑓(𝑥) 𝑖𝑠 𝑶(𝑥𝑛)

• If 𝑓1(𝑥) is 𝑶(𝑔(𝑥)) and 𝑓2(𝑥) is 𝑶(𝑔(𝑥)), then (𝑓1 + 𝑓2)(𝑥) is 𝑶(𝑔(𝑥)).

• If 𝑓1(𝑥) is 𝑶(𝑔1(𝑥)) and 𝑓2(𝑥) is 𝑶(𝑔2(𝑥)), then (𝑓1 + 𝑓2)(𝑥) is 
𝑶(max(𝑔1(𝑥), 𝑔2(𝑥)))

• If 𝑓1(𝑥) is 𝑶(𝑔1(𝑥)) and 𝑓2(𝑥) is 𝑶(𝑔2(𝑥)), then (𝑓1𝑓2)(𝑥) is 𝑶(𝑔1(𝑥) 𝑔2(𝑥)).
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Complexity Examples
What does the following algorithm compute?

procedurewho_knows(a1, a2, …, an: integers)
who_knows := 0
for i := 1 to n-1
for j := i+1 to n
if |ai – aj| > who_knows thenwho_knows := |ai – aj|

{who_knows is the maximum difference between any two numbers in the input sequence}

Comparisons:
𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 +⋯+ 1

=
𝑛 𝑛 – 1

2 = 0.5𝑛2 – 0.5𝑛

Time complexity is 𝑶(𝑛2).
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Complexity Examples
Another algorithm solving the same problem:

procedure max_diff(a1, a2, …, an: integers)
min := a1
max := a1
for i := 2 to n
if ai < min then min := ai
else if ai > max then max := ai

max_diff := max - min

Comparisons (worst case) ? 
2𝑛 − 2

Time complexity is 𝑶(𝑛).
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In-class exceries
Give a Big-O estimate for the number of operations (+ or *) that used 
the following segment of an algorithm.
(Do not count additions used to increment the loop variable.) 

(a) (b) (c)
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