
7/27/22

1

Recurrence Relations
Section 8.2 - 8.3 in the textbook

1

Recurrence Relations
A recurrence relation for the sequence {𝑎!} is an equation that expresses 𝑎𝑛 is
terms of one or more of the previous terms of the sequence, namely,
𝑎0, 𝑎1, … , 𝑎!"#, for all integers 𝑛 with 𝑛 ³ 𝑛0, where n0 is a nonnegative integer.

A sequence is called a solution of a recurrence relation if its terms satisfy the
recurrence relation.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion2

2

7/27/22

2

Recurrence Relations
In other words, a recurrence relation is like a recursively defined sequence, but
without specifying any initial values (initial conditions).

Therefore, the same recurrence relation can have (and usually has) multiple
solutions.

If both the initial conditions and the recurrence relation are specified, then the
sequence is uniquely determined.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion3

3

Recurrence Relations
Example: Consider the recurrence relation 𝑎𝑛 = 2𝑎!"#– 𝑎!"$

for 𝑛 = 2, 3, 4, …

Is the sequence {𝑎!} with 𝑎𝑛 = 3𝑛 a solution of this recurrence relation?

For 𝑛 ³ 2 we see that
2𝑎!"#– 𝑎!"$ = 2(3(𝑛 – 1)) – 3(𝑛 – 2) = 3𝑛 = 𝑎!.

Therefore, {𝑎!} with 𝑎𝑛 = 3𝑛 is a solution of the recurrence relation.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion4

4

7/27/22

3

Recurrence Relations
𝑎𝑛 = 2𝑎!"#– 𝑎!"$ for 𝑛 = 2, 3, 4, …

Is the sequence {𝑎!} with 𝑎! = 5 a solution of the same recurrence relation?

For 𝑛 ³ 2 we see that:
2𝑎!"#– 𝑎!"$ = 2×5 − 5 = 5 = 𝑎!.

Therefore, {𝑎!} with 𝑎𝑛 = 5 is also a solution of the recurrence relation.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion5

5

Modeling with Recurrence Relations
Example:

Someone deposits $10,000 in a savings account at a bank yielding 5% per year with
interest compounded annually. How much money will be in the account after 30
years?

Solution:

Let 𝑃! denote the amount in the account after 𝑛 years.

How can we determine 𝑃! on the basis of 𝑃!"#?

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion6

6

7/27/22

4

Modeling with Recurrence Relations
We can derive the following recurrence relation:

𝑃! = 𝑃!"# + 0.05𝑃!"# = 1.05𝑃!"#.
The initial condition is 𝑃$ = 10,000.

Then we have:
𝑃1 = 1.05𝑃0
𝑃2 = 1.05𝑃1 = (1.05)2𝑃0
𝑃3 = 1.05𝑃2 = (1.05)3𝑃0
…
𝑃𝑛 = 1.05𝑃!"# = (1.05)𝑛𝑃0

We now have a formula to calculate 𝑃𝑛 for any natural number 𝑛 and can
avoid the iteration.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion7

7

Modeling with Recurrence Relations
Let us use this formula to find 𝑃&' under the
initial condition 𝑃' = 10,000:

𝑃&' = 1.05 &'×10,000 = 43,219.42

After 30 years, the account contains $43,219.42.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion8

8

7/27/22

5

Modeling with Recurrence Relations
Another example:

Let 𝑎! denote the number of bit strings of length 𝑛 that do not have two
consecutive 0s (“valid strings”). Find a recurrence relation and give initial conditions
for the sequence {𝑎!}.

Solution:

Idea: The number of valid strings equals the number of valid strings ending with a 0
plus the number of valid strings ending with a 1.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion9

9

Modeling with Recurrence Relations
Let us assume that 𝑛 ³ 3, so that the string contains at least 3 bits.

Let us further assume that we know the number 𝑎!"#of valid strings of length
(𝑛– 1) and the number 𝑎!"$ of valid strings of length (𝑛– 2).
Then how many valid strings of length 𝑛 are there, if the string ends with a 1?

There are 𝑎!"# such strings, namely the set of valid strings of length (𝑛 – 1) with a
1 appended to them.

Note: Whenever we append a 1 to a valid string, that string remains valid.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion10

10

7/27/22

6

Modeling with Recurrence Relations
Now we need to know: How many valid strings of length n are there, if the string
ends with a 0?

Valid strings of length n ending with a 0 must have a 1 as their (n – 1)st bit
(otherwise they would end with 00 and would not be valid).

And what is the number of valid strings of length (𝑛 – 1) that end with a 1?

We already know that there are 𝑎!"# strings of length n that end with a 1.

Therefore, there are 𝑎!"$ strings of length (𝑛 – 1) that end with a 1.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion11

11

Modeling with Recurrence Relations
So there are 𝑎!"$ valid strings of length n that end with a 0 (all valid strings of
length (n – 2) with 10 appended to them).

As we said before, the number of valid strings is the number of valid strings ending
with a 0 plus the number of valid strings ending with a 1.

That gives us the following recurrence relation:
𝑎! = 𝑎!"# + 𝑎!"$

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion12

12

7/27/22

7

Modeling with Recurrence Relations
What are the initial conditions?

a1 = 2 (0 and 1)
a2 = 3 (01, 10, and 11)
a3 = a2 + a1 = 3 + 2 = 5
a4 = a3 + a2 = 5 + 3 = 8
a5 = a4 + a3 = 8 + 5 = 13
…
This sequence satisfies the same recurrence relation as the Fibonacci sequence.
Since a1 = f3 and a2 = f4, we have an = fn+2.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion13

13

Solving Recurrence Relations
In general, we would prefer to have an explicit formula to compute the value of an
rather than conducting n iterations.

For one class of recurrence relations, we can obtain such formulas in a systematic
way.

Those are the recurrence relations that express the terms of a sequence as linear
combinations of previous terms.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion14

14

7/27/22

8

Solving Recurrence Relations
Definition: A linear homogeneous recurrence relation of degree 𝑘 with constant
coefficients is a recurrence relation of the form:

an = c1an-1 + c2an-2 + … + ckan-k,
Where c1, c2, …, ck are real numbers, and ck ¹ 0.

A sequence satisfying such a recurrence relation is uniquely determined by the
recurrence relation and the k initial conditions

a0 = C0, a1 = C1, a2 = C2, …, ak-1 = Ck-1.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion15

15

Solving Recurrence Relations
Examples:
The recurrence relation Pn = (1.05)Pn-1

is a linear homogeneous recurrence relation of degree one.

The recurrence relation fn = fn-1 + fn-2

is a linear homogeneous recurrence relation of degree two.

The recurrence relation an = an-5

is a linear homogeneous recurrence relation of degree five.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion16

16

7/27/22

9

Solving Recurrence Relations
Basically, when solving such recurrence relations, we try to find solutions of the
form 𝒂𝒏 = 𝒓𝒏, where 𝑟 is a constant, 𝑎! = 𝑟! is a solution of the recurrence
relation 𝑎! = 𝑐#𝑎!"# + 𝑐$𝑎!"$ +⋯+ 𝑐)𝑎!") if and only if

𝑟! = 𝑐#𝑟!"# + 𝑐$𝑟!"$ +⋯+ 𝑐)𝑟!").

Divide this equation by rn-k and subtract the right-hand side from the left:

𝑟) − 𝑐#𝑟)"# + 𝑐$𝑟)"$ +⋯+ 𝑐) = 0

This is called the characteristic equation of the recurrence relation.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion17

17

Solving Recurrence Relations
The solutions of this equation are called the characteristic roots of the recurrence
relation.

Let us consider linear homogeneous recurrence relations of degree two.

Theorem: Let 𝑐1 and 𝑐2 be real numbers. Suppose that 𝑟$– 𝑐#𝑟– 𝑐$ = 0 has two
distinct roots 𝑟1 and 𝑟2. Then the sequence {𝑎𝑛} is a solution of the recurrence
relation 𝑎! = 𝑐#𝑎!"# + 𝑐$𝑎!"$ ↔ 𝑎! = 𝛼#𝑟#! + 𝛼$𝑟$! for 𝑛 = 0, 1, 2, … , where
𝛼# and 𝛼$ are constants.

The proof is shown on pp. 542-543 of the textbook

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion18

18

7/27/22

10

Solving Recurrence Relations
Example: What is the solution of the recurrence relation

an = an-1 + 2an-2 where n≥ 2
a0 = 2
a1 = 7 ?

Solution:
The characteristic equation of the recurrence relation is r2 – r – 2 = 0.
Its roots are r = 2 and r = -1.
Hence, the sequence {an} is a solution to the recurrence relation if and only if:

an = a12n + a2(-1)n for some constants a1 and a2.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion19

19

Solving Recurrence Relations
Given the equation an = a12n + a2(-1)n and the initial conditions a0 = 2 and a1 = 7, it
follows that:
a0 = 2 = a1 + a2

a1 = 7 = a1×2 + a2 ×(-1)

Solving these two equations gives us
a1 = 3 and a2 = -1.

Therefore, the solution to the recurrence relation and initial conditions is the
sequence {an} with an = 3×2n – (-1)n.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion20

20

7/27/22

11

Solving Recurrence Relations
Another Example: Give an explicit formula for the Fibonacci numbers.

Solution:

The Fibonacci numbers satisfy the recurrence relation fn = fn-1 + fn-2 with initial
conditions f0 = 0 and f1 = 1.

The characteristic equation is r2 – r – 1 = 0.

Its roots are 𝑟# =
#* +
$, 𝑟$ =

#" +
$

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion21

21

Solving Recurrence Relations
Therefore, the Fibonacci numbers are given by:

𝑓! = 𝛼#
#* +
$

!
+ 𝛼$

#" +
$

!
for some 𝛼# and 𝛼$

We can determine values for these constants so that the sequence meets the
conditions f0 = 0 and f1 = 1:

𝑓' = 𝛼# + 𝛼$ = 0

𝑓# = 𝛼#
1 + 5
2 + 𝛼$

1 − 5
2 = 1

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion22

22

7/27/22

12

Solving Recurrence Relations
The unique solution to this system of two equations and two variables is

𝛼# =
1
5
, 𝛼$ = −

1
5

So finally, we obtained an explicit formula for the Fibonacci numbers:

𝑓! =
1
5
1 + 5
2

!

−
1
5
1 − 5
2

!

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion23

23

Solving Recurrence Relations
But what happens if the characteristic equation has only one root?

How can we then match our equation with the initial conditions a0 and a1 ?

Theorem: Let 𝑐1 and 𝑐2 be real numbers with 𝑐$ ≠ 0. Suppose that 𝑟$– 𝑐#𝑟– 𝑐$ =
0 has only one roots 𝑟0. The sequence {𝑎!} is a solution of the recurrence relation
𝑎! = 𝑐#𝑎!"# + 𝑐$𝑎!"$ ↔ 𝑎! = 𝛼#𝑟'! + 𝛼$𝑛𝑟'! for 𝑛 = 0, 1, 2, … , where 𝛼# and 𝛼$
are constants

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion24

24

7/27/22

13

Solving Recurrence Relations
Example: What is the solution of the recurrence relation an = 6an-1 – 9an-2 with a0 =
1 and a1 = 6?

Solution:
The only root of r2 – 6r + 9 = 0 is r0 = 3. Hence, the solution to the recurrence
relation is an = a13n + a2n3n for some constants a1 and a2.
To match the initial condition, we need:

a0 = 1 = a1
a1 = 6 = a1×3 + a2×3

Solving these equations yields a1 = 1 and a2 = 1.
Consequently, the overall solution is given by an = 3n + n3n.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion25

25

Divide-and-Conquer Relations
Some algorithms take a problem and successively divide it into one or more
smaller problems until there is a trivial solution to them.

For example, the binary search algorithm recursively divides the input into two
halves and eliminates the irrelevant half until only one relevant element remained.

This technique is called “divide and conquer”.

We can use recurrence relations to analyze the complexity of such algorithms.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion26

26

7/27/22

14

Divide-and-Conquer Relations
Suppose that an algorithm divides a problem (input) of size n into a subproblems,

where each subproblem is of size !,. Assume that 𝑔(𝑛) operations are performed
for such a division of a problem.

Then, if 𝒇(𝒏) represents the number of operations required to solve the problem,
it follows that f satisfies the recurrence relation

𝒇(𝒏) = 𝒂𝒇(𝒏𝒃) + 𝒈(𝒏).

This is called a divide-and-conquer recurrence relation.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion27

27

Divide-and-Conquer Relations
Example: The binary search algorithm reduces the search for an element in a
search sequence of size 𝒏 to the binary search for this element in a search

sequence of size 𝒏
𝟐

(if n is even).

Two comparisons are needed to perform this reduction.

Hence, if 𝒇(𝒏) is the number of comparisons required to search for an element in a

search sequence of size n, then 𝒇(𝒏) = 𝒇 𝒏
𝟐 + 𝟐 if n is even.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion28

28

7/27/22

15

Divide-and-Conquer Relations
Usually, we do not try to solve such divide-and conquer relations, but we use them to
derive a big-O estimate for the complexity of an algorithm.

Theorem: Let 𝑓 be an increasing function that satisfies the recurrence relation

𝑓(𝑛) = 𝑎𝑓(
𝑛
𝑏) + 𝑐𝑛%

whenever 𝑛 = 𝑏&, where 𝑘 is a positive integer, 𝑎, 𝑐, and 𝑑 are real numbers with a ³ 1,
and 𝑏 is an integer greater than 1. Then 𝑓(𝑛) is
𝑂(𝑛%), if a < bd,
𝑂(𝑛% log 𝑛) if a = bd,
𝑂(𝑛'()* *) if a > bd

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion29

29

Divide-and-Conquer Relations
Example:

For binary search, we have: 𝑓(𝑛) = 𝑓(!$) + 2, so 𝑎 = 1, 𝑏 = 2, and 𝑑 = 0
(d = 0 because here, 𝑔(𝑛) does not depend on 𝑛).

Consequently, a = bd, and therefore, 𝑓(𝑛) is O(nd log n) = O(log n).

The binary search algorithm has logarithmic time complexity.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion30

30

7/27/22

16

Algorithms
Chapter 3 in the textbook

31

Algorithms

What is an algorithm?

An algorithm is a finite set of precise instructions for performing a computation or
for solving a problem.

This is a rather vague definition. You will get to know a more precise and
mathematically useful definition when you attend CS420 or CS620.

But this one is good enough for now…

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion32

32

7/27/22

17

Algorithms
Properties of algorithms:
• Input from a specified set,
• Output from a specified set (solution),

• Definiteness of every step in the computation,

• Correctness of output for every possible input,

• Finiteness of the number of calculation steps,

• Effectiveness of each calculation step and

• Generality for a class of problems.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion33

33

Algorithm Examples
We will use a pseudocode to specify algorithms, which slightly reminds us of Basic
and Pascal.

Example: an algorithm that finds the maximum element in a finite sequence

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion34

34

7/27/22

18

Algorithm Examples
Another example: a linear search algorithm, that is, an algorithm that linearly
searches a sequence for a particular element.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion35

35

Algorithm Examples
If the terms in a sequence are ordered, a binary search algorithm is more efficient
than linear search.

The binary search algorithm iteratively restricts the relevant search interval until it
closes in on the position of the element to be located.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion36

36

7/27/22

19

Algorithm Examples

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion37

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

37

Algorithm Examples

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion38

a c d f g h j l m o p r s u v x z

center element

search interval

binary search for the letter ‘j’

38

7/27/22

20

Algorithm Examples

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion39

a c d f g h j l m o p r s u v x z

center element

search interval

binary search for the letter ‘j’

39

Algorithm Examples

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion40

a c d f g h j l m o p r s u v x z

center element

search interval

binary search for the letter ‘j’

Found!

40

7/27/22

21

Algorithm Examples

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion41

41

Algorithm Examples
Obviously, on sorted sequences, binary search is more efficient than linear search.

How can we analyze the efficiency of algorithms?

We can measure the
• time (number of elementary computations) and
• space (number of memory cells) that the algorithm requires.

These measures are called computational complexity and space complexity,
respectively.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion42

42

7/27/22

22

Complexity
What is the time complexity of the linear search algorithm?

We will determine the worst-case number of comparisons as a function of the
number n of terms in the sequence.

The worst case for the linear algorithm occurs when the element to be located is
not included in the sequence.

In that case, every item in the sequence is compared to the element to be located.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion43

43

Algorithm Examples
Here is the linear search algorithm again:

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion44

44

7/27/22

23

Algorithm Examples
Here is the linear search algorithm again:

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion45

Is processed n times, requiring 2n
comparisons. When it is entered for
the (n+1)th time, only the
comparison i £ n is executed and
terminates the loop

Finally, this comparison is excuted,
so in the worst-case, the time
complexity is (2n+2)

45

Reminder: Binary Search Algorithm

What is the time complexity of the algorithm?

Again, we will determine the worst-case number of comparisons as a function of the
number 𝑛 of terms in the sequence.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion46

46

7/27/22

24

Complexity-Binary Search Algorithm
• Let us assume there are 𝑛 = 2𝑘 elements in the list, which means that 𝑘 = log 𝑛.
• If 𝑛 is not a power of 2, it can be considered part of a larger list, where 2) < 𝑛 <
2)*#.
• In the first cycle of the loop

üThe search interval is restricted to 2&,- elements,
üUsing 2 comparisons

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion47

47

Complexity-Binary Search Algorithm

• In the second cycle of the loop
üThe search interval is restricted to 2&,. elements,
üUsing 2 comparisons (again)

• … this is repeated until only 1 (2') element left in the search interval
üAt this point, 2k comparisons has been conducted

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion48

48

7/27/22

25

Complexity
Then, the comparison

𝑤ℎ𝑖𝑙𝑒 (𝑖 < 𝑗)
exits the loop, and a final comparison

𝑖𝑓 𝑥 = 𝑎/ 𝑡ℎ𝑒𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∶= 𝑖

determines whether the element was found.

Therefore, the overall time complexity of the binary search algorithm is:
2𝑘 + 2 = 2élog 𝑛ù+ 2.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion49

49

Complexity
In general, we are not so much interested in the time and space complexity for
small inputs.

For example, while the difference in time complexity between linear and binary
search is meaningless for a sequence with 𝑛 = 10, it is gigantic for 𝑛 = 230.

For example, let us assume two algorithms A and B that solve the same class of
problems.

The time complexity of A is 5,000𝑛, the one for B is é1.1𝑛ù for an input with 𝑛
elements.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion50

50

7/27/22

26

Complexity
Comparison: time complexity of algorithms A and B

This means that algorithm B cannot be used for large inputs, while running algorithm A is
still feasible.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion51

Algorithm A Algorithm BInput Size

n

10

100

1,000

1,000,000

5,000n

50,000

500,000

5,000,000

5 ⋅ 109

é1.1𝑛ù

3

2.5 ⋅ 1041

13,781

4.8 ⋅ 1041392

51

Complexity
So what important is the growth of the complexity functions.

The growth of time and space complexity with increasing input size 𝑛 is a suitable
measure for the comparison of algorithms.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion52

52

7/27/22

27

The Growth of Functions
The growth of functions is usually described using the big-O notation.

Definition: Let 𝑓 and 𝑔 be functions from the integers or the real numbers to the
real numbers. We say that 𝑓(𝑥) is 𝑶(𝑔(𝑥)) if there are constants 𝐶 and 𝑘 such that

|𝑓(𝑥)| £ 𝐶|𝑔(𝑥)|, whenever 𝑥 > 𝑘.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion53

53

The Growth of Functions
When we analyze the growth of complexity
functions, 𝑓(𝑥) and 𝑔(𝑥) are always positive.

Therefore, we can simplify the big-O requirement
to

𝑓(𝑥) £ 𝐶×𝑔(𝑥) whenever 𝑥 > 𝑘.

If we want to show that 𝑓(𝑥) is 𝑶(𝑔(𝑥)), we only
need to find one pair (𝐶, 𝑘) (which is never
unique).

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion54

54

7/27/22

28

The Growth of Functions
The idea behind the big-O notation is to establish an upper boundary for the
growth of a function 𝑓(𝑥) for large 𝑥.

This boundary is specified by a function 𝑔(𝑥) that is usually much simpler than
𝑓(𝑥).

We accept the constant 𝐶 in the requirement

𝑓(𝑥) £ 𝐶×𝑔(𝑥) whenever 𝑥 > 𝑘,

because 𝑪 does not grow with 𝒙

We are only interested in large 𝑥, so it is OK if 𝑓(𝑥) > 𝐶×𝑔(𝑥) for 𝑥 £ 𝑘.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion55

55

The Growth of Functions
Example: Show that 𝑓(𝑥) = 𝑥2 + 2𝑥 + 1 is 𝑶(𝑥2).

For 𝑥 > 1 we have:
𝑥2+ 2𝑥 + 1 £ 𝑥2+ 2𝑥2+ 𝑥2
Þ 𝑥2 + 2𝑥 + 1 £ 4𝑥2

Therefore, for 𝐶 = 4 and 𝑘 = 1:
𝑓(𝑥) £ 𝐶𝑥2 whenever 𝑥 > 𝑘.
Þ 𝑓(𝑥) 𝑖𝑠 𝑂(𝑥2).

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion56

56

7/27/22

29

The Growth of Functions
Question: If 𝑓(𝑥) is 𝑶(𝑥2), is it also 𝑶(𝑥3)?

Yes. 𝑥3 grows faster than 𝑥2, so 𝑥3 grows also faster than 𝑓(𝑥).

Therefore, we always have to find the smallest simple function 𝑔(𝑥) for which 𝑓(𝑥)
is 𝑶(𝑔(𝑥))

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion57

57

The Growth of Functions
“Popular” functions g(n) are:

• 𝑛𝑙𝑜𝑔𝑛, 1, 2𝑛, 𝑛2, 𝑛!, 𝑛, 𝑛3, log 𝑛

Listed from slowest to fastest growth:
• 1
• log n
• n
• n log n
• n2

• n3

• 2n

• n!

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion58

58

7/27/22

30

The Growth of Functions

A problem that can be solved with polynomial worst-case complexity is called
tractable.

Problems of higher complexity are called intractable.

Problems that no algorithm can solve are called unsolvable.

More about this in CS420.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion59

59

Useful Rules for Big-O
For any polynomial 𝑓(𝑥) = 𝑎!𝑥! + 𝑎!"#𝑥!"# +⋯+ 𝑎', where 𝑎0, 𝑎1, … , 𝑎! are
real numbers, 𝑓(𝑥) 𝑖𝑠 𝑶(𝑥𝑛)

• If 𝑓1(𝑥) is 𝑶(𝑔(𝑥)) and 𝑓2(𝑥) is 𝑶(𝑔(𝑥)), then (𝑓1 + 𝑓2)(𝑥) is 𝑶(𝑔(𝑥)).

• If 𝑓1(𝑥) is 𝑶(𝑔1(𝑥)) and 𝑓2(𝑥) is 𝑶(𝑔2(𝑥)), then (𝑓1 + 𝑓2)(𝑥) is
𝑶(max(𝑔1(𝑥), 𝑔2(𝑥)))

• If 𝑓1(𝑥) is 𝑶(𝑔1(𝑥)) and 𝑓2(𝑥) is 𝑶(𝑔2(𝑥)), then (𝑓1𝑓2)(𝑥) is 𝑶(𝑔1(𝑥) 𝑔2(𝑥)).

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion60

60

7/27/22

31

Complexity Examples
What does the following algorithm compute?

procedurewho_knows(a1, a2, …, an: integers)
who_knows := 0
for i := 1 to n-1
for j := i+1 to n
if |ai – aj| > who_knows thenwho_knows := |ai – aj|

{who_knows is the maximum difference between any two numbers in the input sequence}

Comparisons:
𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 +⋯+ 1

=
𝑛 𝑛 – 1

2 = 0.5𝑛2 – 0.5𝑛

Time complexity is 𝑶(𝑛2).

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion61

61

Complexity Examples
Another algorithm solving the same problem:

procedure max_diff(a1, a2, …, an: integers)
min := a1
max := a1
for i := 2 to n
if ai < min then min := ai
else if ai > max then max := ai

max_diff := max - min

Comparisons (worst case) ?
2𝑛 − 2

Time complexity is 𝑶(𝑛).

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion62

62

7/27/22

32

In-class exceries
Give a Big-O estimate for the number of operations (+ or *) that used
the following segment of an algorithm.
(Do not count additions used to increment the loop variable.)

(a) (b) (c)

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion63

63

