Recurrence Relations

Section 8.2 - 8.3 in the textbook

1

<section-header><text><text><text><page-footer>

<section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><text><text><text><equation-block>

<section-header><text><text><text><text><text><page-footer>

<section-header><text><equation-block><equation-block><text><text><text><text>

Divide-and-Conquer Relations

Suppose that an algorithm divides a problem (input) of size **n** into **a** subproblems, where each subproblem is of size $\frac{n}{b}$. Assume that g(n) operations are performed for such a division of a problem.

Then, if f(n) represents the number of operations required to solve the problem, it follows that f satisfies the recurrence relation

$$f(n) = af(\frac{n}{b}) + g(n).$$

This is called a divide-and-conquer recurrence relation.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion

27

<text><text><equation-block><text><text><equation-block><text><text><text>

Useful Rules for Big-O

For any **polynomial** $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$, where a_0, a_1, \dots, a_n are real numbers, f(x) is $O(x^n)$

- If $f_1(x)$ is O(g(x)) and $f_2(x)$ is O(g(x)), then $(f_1 + f_2)(x)$ is O(g(x)).
- If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$, then $(f_1 + f_2)(x)$ is $O(\max(g_1(x), g_2(x)))$
- If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$, then $(f_1f_2)(x)$ is $O(g_1(x) g_2(x))$.

60

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion

