
8/1/22

1

Algorithms
Chapter 3 in the textbook

1

Algorithms

What is an algorithm?

An algorithm is a finite set of precise instructions for performing a computation or
for solving a problem.

This is a rather vague definition. You will get to know a more precise and
mathematically useful definition when you attend CS420 or CS620.

But this one is good enough for now…

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion2

2

8/1/22

2

Algorithms

Properties of algorithms:
• Input from a specified set,

• Output from a specified set (solution),

• Definiteness of every step in the computation,

• Correctness of output for every possible input,

• Finiteness of the number of calculation steps,

• Effectiveness of each calculation step and

• Generality for a class of problems.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion3

3

Algorithm Examples

We will use a pseudocode to specify algorithms, which slightly reminds us of Basic
and Pascal.

Example: an algorithm that finds the maximum element in a finite sequence

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion4

4

8/1/22

3

Algorithm Examples

Another example: a linear search algorithm, that is, an algorithm that linearly
searches a sequence for a particular element.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion5

5

Algorithm Examples

If the terms in a sequence are ordered, a binary search algorithm is more efficient
than linear search.

The binary search algorithm iteratively restricts the relevant search interval until it
closes in on the position of the element to be located.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion6

6

8/1/22

4

Algorithm Examples

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion7

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

7

Algorithm Examples

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion8

a c d f g h j l m o p r s u v x z

center element

search interval

binary search for the letter ‘j’

8

8/1/22

5

Algorithm Examples

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion9

a c d f g h j l m o p r s u v x z

center element

search interval

binary search for the letter ‘j’

9

Algorithm Examples

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion10

a c d f g h j l m o p r s u v x z

center element

search interval

binary search for the letter ‘j’

Found!

10

8/1/22

6

Algorithm Examples

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion11

11

Algorithm Examples

Obviously, on sorted sequences, binary search is more efficient than linear search.

How can we analyze the efficiency of algorithms?

We can measure the
• time (number of elementary computations) and
• space (number of memory cells) that the algorithm requires.

These measures are called computational complexity and space complexity,
respectively.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion12

12

8/1/22

7

Complexity

What is the time complexity of the linear search algorithm?

We will determine the worst-case number of comparisons as a function of the
number n of terms in the sequence.

The worst case for the linear algorithm occurs when the element to be located is
not included in the sequence.

In that case, every item in the sequence is compared to the element to be located.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion13

13

Algorithm Examples

Here is the linear search algorithm again:

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion14

14

8/1/22

8

Algorithm Examples

Here is the linear search algorithm again:

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion15

Is processed n times,
requiring 2n
comparisons. When it
is entered for the
(n+1)th time, only the
comparison i £ n is
executed and
terminates the loop

Finally, this
comparison is
excuted, so in the
worst-case, the time
complexity is (2n+2)15

Reminder: Binary Search Algorithm

What is the time complexity of the algorithm?

Again, we will determine the worst-case number of comparisons as a function of the number 𝑛 of
terms in the sequence.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion16

16

8/1/22

9

Complexity-Binary Search Algorithm

Let us assume there are 𝑛 = 2𝑘 elements in the list, which means that 𝑘 = log 𝑛.

If 𝑛 is not a power of 2, it can be considered part of a larger list, where 2! < 𝑛 <
2!"#.

In the first cycle of the loop

üThe search interval is restricted to 2"#$ elements,
üUsing 2 comparisons

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion17

17

Complexity-Binary Search Algorithm

In the second cycle of the loop
üThe search interval is restricted to 2"#% elements,

üUsing 2 comparisons (again)

… this is repeated until only 1 (2$) element left in the search interval
üAt this point, 2k comparisons has been conducted

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion18

18

8/1/22

10

Complexity

Then, the comparison
𝑤ℎ𝑖𝑙𝑒 (𝑖 < 𝑗)

exits the loop, and a final comparison

𝑖𝑓 𝑥 = 𝑎% 𝑡ℎ𝑒𝑛 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∶= 𝑖

determines whether the element was found.

Therefore, the overall time complexity of the binary search algorithm is:
2𝑘 + 2 = 2élog 𝑛ù+ 2.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion19

19

Complexity

In general, we are not so much interested in the time and space complexity for
small inputs.

For example, while the difference in time complexity between linear and binary
search is meaningless for a sequence with 𝑛 = 10, it is gigantic for 𝑛 = 230.

For example, let us assume two algorithms A and B that solve the same class of
problems.

The time complexity of A is 5,000𝑛, the one for B is é1.1𝑛ù for an input with 𝑛
elements.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion20

20

8/1/22

11

Complexity
Comparison: time complexity of algorithms A and B

This means that algorithm B cannot be used for large inputs, while running algorithm A is still
feasible.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion21

Algorithm A Algorithm BInput Size
n

10
100

1,000
1,000,000

5,000n
50,000

500,000
5,000,000
5 ⋅ 109

é1.1𝑛ù
3

2.5 ⋅ 1041
13,781

4.8 ⋅ 1041392

21

Complexity

So what important is the growth of the complexity functions.

The growth of time and space complexity with increasing input size 𝑛 is a suitable
measure for the comparison of algorithms.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion22

22

8/1/22

12

The Growth of Functions

The growth of functions is usually described using the big-O notation.

Definition: Let 𝑓 and 𝑔 be functions from the integers or the real numbers to the
real numbers. We say that 𝑓(𝑥) is 𝑶(𝑔(𝑥)) if there are constants 𝐶 and 𝑘 such that

|𝑓(𝑥)| £ 𝐶|𝑔(𝑥)|, whenever 𝑥 > 𝑘.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion23

23

The Growth of Functions

When we analyze the growth of complexity
functions, 𝑓(𝑥) and 𝑔(𝑥) are always positive.

Therefore, we can simplify the big-O requirement
to

𝑓(𝑥) £ 𝐶×𝑔(𝑥) whenever 𝑥 > 𝑘.

If we want to show that 𝑓(𝑥) is 𝑶(𝑔(𝑥)), we only
need to find one pair (𝐶, 𝑘) (which is never
unique).

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion24

24

8/1/22

13

The Growth of Functions

The idea behind the big-O notation is to establish an upper boundary for the growth of a
function 𝑓(𝑥) for large 𝑥.

This boundary is specified by a function 𝑔(𝑥) that is usually much simpler than 𝑓(𝑥).

We accept the constant 𝐶 in the requirement

𝑓(𝑥) £ 𝐶×𝑔(𝑥) whenever 𝑥 > 𝑘,

because 𝑪 does not grow with 𝒙

We are only interested in large 𝑥, so it is OK if 𝑓(𝑥) > 𝐶×𝑔(𝑥) for 𝑥 £ 𝑘.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion25

25

The Growth of Functions
Example: Show that 𝑓(𝑥) = 𝑥2 + 2𝑥 + 1 is 𝑶(𝑥2).

For 𝑥 > 1 we have:
𝑥2+ 2𝑥 + 1 £ 𝑥2+ 2𝑥2+ 𝑥2
Þ 𝑥2 + 2𝑥 + 1 £ 4𝑥2

Therefore, for 𝐶 = 4 and 𝑘 = 1:
𝑓(𝑥) £ 𝐶𝑥2 whenever 𝑥 > 𝑘.
Þ 𝑓(𝑥) 𝑖𝑠 𝑂(𝑥2).

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion26

26

8/1/22

14

The Growth of Functions

Question: If 𝑓(𝑥) is 𝑶(𝑥2), is it also 𝑶(𝑥3)?

Yes. 𝑥3 grows faster than 𝑥2, so 𝑥3 grows also faster than 𝑓(𝑥).

Therefore, we always have to find the smallest simple function 𝑔(𝑥) for which 𝑓(𝑥)
is 𝑶(𝑔(𝑥))

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion27

27

The Growth of Functions

“Popular” functions g(n) are:
• 𝑛𝑙𝑜𝑔𝑛, 1, 2𝑛, 𝑛2, 𝑛!, 𝑛, 𝑛3, log 𝑛

Listed from slowest to fastest growth:
• 1
• log n
• n
• n log n
• n2

• n3

• 2n

• n!

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion28

28

8/1/22

15

The Growth of Functions

A problem that can be solved with polynomial worst-case complexity is called
tractable.

Problems of higher complexity are called intractable.

Problems that no algorithm can solve are called unsolvable.

More about this in CS420.

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion29

29

Useful Rules for Big-O

For any polynomial 𝑓(𝑥) = 𝑎,𝑥, + 𝑎,-#𝑥,-# +⋯+ 𝑎$, where 𝑎0, 𝑎1, … , 𝑎, are
real numbers, 𝑓(𝑥) 𝑖𝑠 𝑶(𝑥𝑛)

If 𝑓1(𝑥) is 𝑶(𝑔(𝑥)) and 𝑓2(𝑥) is 𝑶(𝑔(𝑥)), then (𝑓1 + 𝑓2)(𝑥) is 𝑶(𝑔(𝑥)).

If 𝑓1(𝑥) is 𝑶(𝑔1(𝑥)) and 𝑓2(𝑥) is 𝑶(𝑔2(𝑥)), then (𝑓1 + 𝑓2)(𝑥) is
𝑶(max(𝑔1(𝑥), 𝑔2(𝑥)))

If 𝑓1(𝑥) is 𝑶(𝑔1(𝑥)) and 𝑓2(𝑥) is 𝑶(𝑔2(𝑥)), then (𝑓1𝑓2)(𝑥) is 𝑶(𝑔1(𝑥) 𝑔2(𝑥)).

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion30

30

8/1/22

16

Complexity Examples
What does the following algorithm compute?

procedure who_knows(a1, a2, …, an: integers)
who_knows := 0
for i := 1 to n-1

for j := i+1 to n
if |ai – aj| > who_knows then who_knows := |ai – aj|

{who_knows is the maximum difference between any two numbers in the input sequence}

Comparisons:
𝑛 − 1 + 𝑛 − 2 + 𝑛 − 3 +⋯+ 1

=
𝑛 𝑛 – 1

2
= 0.5𝑛2 – 0.5𝑛

Time complexity is 𝑶(𝑛2).

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion31

31

Complexity Examples
Another algorithm solving the same problem:

procedure max_diff(a1, a2, …, an: integers)
min := a1
max := a1
for i := 2 to n

if ai < min then min := ai
else if ai > max then max := ai

max_diff := max - min

Comparisons (worst case) ?
2𝑛 − 2

Time complexity is 𝑶(𝑛).

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion32

32

8/1/22

17

In-class exceries

Give a Big-O estimate for the number of operations (+ or *) that used
the following segment of an algorithm.

(Do not count additions used to increment the loop variable.)

(a) (b) (c)

Applied Discrete Mathematics @ Class #4: Algorithms, Recursion33

33

Induction
Chapter 5 in the textbook

34

8/1/22

18

Mathematical Induction

Suppose we have an infinite ladder, and we want to
know whether wen can reach every step on this
ladder.

1. We can reach the first rung of the ladder.
2. If we can reach a particular rung of the ladder, then we

can reach to the next rung.

Mathematical induction is an extremely important
proof technique that can be used to prove assertions
of this type.
mathematical induction is used extensively to prove
results about a large variety of discrete objects

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting35

35

Induction

The principle of mathematical induction is a useful tool for proving
that a certain predicate is true for all natural numbers.

It cannot be used to discover theorems, but only to prove them.

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting36

36

8/1/22

19

Induction

If we have a propositional function P(n), and we want to prove that P(n) is
true for any natural number n, we do the following:
1. Show that P(0) is true.

(basis step)

2. Show that if P(n) then P(n + 1) for any 𝑛Îℕ.
(inductive step)

3. Then P(n) must be true for any 𝑛Îℕ.
(conclusion)

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting37

37

Induction
Example: Show that n < 2n for all positive integers n.
Let P(n) be the proposition “n < 2n.”

• Show that P(1) is true. (basis step)
• P(1) is true, because 1 < 21 = 2.

• Show that if P(n) is true, then P(n + 1) is true. (inductive step)
• Assume that n < 2n is true.
• We need to show that P(n + 1) is true, i.e. n + 1 < 2n+1

• We start from n < 2n:
• n + 1 < 2n + 1 £ 2n + 2n = 2n+1

• Therefore, if n < 2n then n + 1 < 2n+1

• Then P(n) must be true for any positive integer. (conclusion)
• n < 2n is true for any positive integer.

• End of proof.

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting38

38

8/1/22

20

Induction

Another Example (“Gauss”): 1 + 2 +⋯+ 𝑛 = ,(,"#)
0

Let P n is proposition 1 + 2 +⋯+ 𝑛 = ,(,"#)
0

1. Show that P(0) is true. (basis step)
For n=0, we get 0=0. True

2. Show that if P(n) then P(n+1) for any n ∈ ℕ (inductive step)
1 + 2 +⋯+ 𝑛 = $ $%&

'

1 + 2 +⋯+ 𝑛 + 𝑛 + 1 = $ $%&
'

+ (𝑛 + 1)

= 𝑛 + 1 $
'
+ 1

= 𝑛 + 1 $%'
'

= 𝑛 + 1 $%& %&
'

3. Therefore P(n) must be true for any n ∈ ℕ (conclusion)

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting39

39

Induction

There is another proof technique that is very similar to the principle of
mathematical induction.

It is called the second principle of mathematical induction (also called
Strong induction)

It can be used to prove that a propositional function P(n) is true for any
natural number 𝑛.

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting40

40

8/1/22

21

Induction

The second principle of mathematical induction:

1. Show that P(0) is true.
(basis step)

2. Show that if P(0) and P(1) and … and P(n), then P(n + 1) for any
𝑛Îℕ.
(inductive step)

3. Then P(n) must be true for any 𝑛Îℕ.
(conclusion)

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting41

41

Induction

Example: Show that every integer greater than 1 can be written as the
product of primes.
1. Show that P(2) is true.

(basis step) Obviously, 2 is the product of one prime: itself.
2. Show that if P(2) and P(3) and … and P(n), then P(n + 1) for any 𝑛Îℕ.

(inductive step)
There are two possible cases:
• If (n + 1) is prime, then obviously P(n + 1) is true.
• If (n + 1) is composite, it can be written as the product of two integers 𝑎 and 𝑏

such that 2 £ 𝑎 £ 𝑏 < 𝑛 + 1.

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting42

42

8/1/22

22

Induction

• If (n + 1) is prime, then obviously P(n + 1) is true.
• If (n + 1) is composite, it can be written as the product of two integers 𝑎 and 𝑏 such

that 2 £ 𝑎 £ 𝑏 < 𝑛 + 1.

By the induction hypothesis both 𝑎 and 𝑏 can be written as the product of primes.
• Therefore, 𝑛 + 1 = 𝑎×𝑏 can be written as the product of primes.

3. Then P(n) must be true for any 𝑛Îℕ with 𝑛 > 1.
(conclusion)

4. End of proof

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting43

43

Induction exercises

Use mathematical induction to show that:

a) 1 + 2< + 2=…+ 2> = 2>?< − 1

b) ∑@AB> 𝑎𝑟@ = 𝑎 + 𝑎𝑟 + 𝑎𝑟= +⋯+ 𝑎𝑟> = CD+,-EC
DE<

c) 𝑛 < 2>

d) 2> < 𝑛!

e) Let 𝐻@ = 1 + <
=
+ <

F
+⋯+ <

@
is the 𝑗GH harmonic number

Show that 𝐻=+ ≥ 1 + >
=

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting44

44

8/1/22

23

Recursive Definitions

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting45

Recursion is a principle closely related to
mathematical induction.

In a recursive definition, an object is defined in
terms of itself.

We can recursively define sequences, functions
and sets.

45

Recursively Defined Sequences

Example:

The sequence {𝑎>} of powers of 2 is given by 𝑎! = 2! for 𝑛 = 0, 1, 2, …

The same sequence can also be defined recursively:
𝑎$ = 1
𝑎,"# = 2 ⋅ 𝑎, for 𝑛 = 0, 1, 2, …

Obviously, induction and recursion are similar principles.

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting46

46

8/1/22

24

Recursively Defined Functions

We can use the following method to define a function with the natural
numbers as its domain:

1. Specify the value of the function at zero.
2. Give a rule for finding its value at any integer from its values at

smaller integers.

Such a definition is called recursive or inductive definition.

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting47

47

Recursively Defined Functions

Example:
𝑓(0) = 3
𝑓(𝑛 + 1) = 2𝑓(𝑛) + 3

𝑓(0) = 3
𝑓(1) = 2𝑓(0) + 3 = 2×3 + 3 = 9
𝑓(2) = 2𝑓(1) + 3 = 2×9 + 3 = 21
𝑓(3) = 2𝑓(2) + 3 = 2×21 + 3 = 45
𝑓(4) = 2𝑓(3) + 3 = 2×45 + 3 = 93

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting48

48

8/1/22

25

Recursively Defined Functions
How can we recursively define the factorial function 𝑓(𝑛) = 𝑛! ?

𝑓(0) = 1
𝑓(𝑛 + 1) = (𝑛 + 1)𝑓(𝑛)

𝑓(0) = 1
𝑓(1) = 1𝑓(0) = 1×1 = 1
𝑓(2) = 2𝑓(1) = 2×1 = 2
𝑓(3) = 3𝑓(2) = 3×2 = 6
𝑓(4) = 4𝑓(3) = 4×6 = 24

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting49

49

Recursively Defined Functions
A famous example: The Fibonacci numbers
𝑓(0) = 0, 𝑓(1) = 1
𝑓(𝑛) = 𝑓(𝑛 – 1) + 𝑓(𝑛 − 2)

𝑓(0) = 0
𝑓(1) = 1
𝑓(2) = 𝑓(1) + 𝑓(0) = 1 + 0 = 1
𝑓(3) = 𝑓(2) + 𝑓(1) = 1 + 1 = 2
𝑓(4) = 𝑓(3) + 𝑓(2) = 2 + 1 = 3
𝑓(5) = 𝑓(4) + 𝑓(3) = 3 + 2 = 5
𝑓(6) = 𝑓(5) + 𝑓(4) = 5 + 3 = 8

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting50

50

8/1/22

26

Recursively Defined Sets

If we want to recursively define a set, we need to provide two
things:
• an initial set of elements,
• rules for the construction of additional elements from elements in the

set.

Example: Let S be recursively defined by:
• 3 Î S
• (x + y) Î S if x Î S and y Î S

S is the set of positive integers divisible by 3.

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting51

51

Recursively Defined Sets
Proof:
Let 𝐴 be the set of all positive integers divisible by 3.

To show that 𝐴 = 𝑆, we must show that 𝐴 Í 𝑆 and 𝑆 Í 𝐴.
Part I:

To prove that 𝐴 Í 𝑆, we must show that every positive integer divisible by
3 is in 𝑆. We will use mathematical induction to show this.
• Let 𝑃(𝑛) be the statement “3𝑛 belongs to 𝑆”.
• Basis step: 𝑃(1) is true, because 3 ∈ 𝑆.
• Inductive step: To show If 𝑃(𝑛) is true, then 𝑃(𝑛 + 1) is true.

Assume 3𝑛 ∈ 𝑆. Since 3𝑛 ∈ 𝑆 and 3 ∈ 𝑆 , it follows from the recursive
definition of 𝑆 that 3𝑛 + 3 = 3(𝑛 + 1) is also in 𝑆

Conclusion for Part I: 𝐴 Í 𝑆

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting52

52

8/1/22

27

Recursively Defined Sets
Part II: To show that 𝑆 Í 𝐴

• Basis step: All intitial elements of 𝑆 are in 𝐴. 3 is in 𝐴. True
• Inductive step: To show 𝑥 + 𝑦 ∈ 𝐴 whenever 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴.

If 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐴, it follows that 𝑥, 𝑦 are both divisible by 3. Therefore, (𝑥 +
𝑦) is divisible by 3

Conclusion for Part II: S Í A

• Overall conclusion: 𝐴 = 𝑆

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting53

53

Recursively Defined Sets

Another example:
The well-formed formulas of variables, numerals and operators from {+,−,∗
,/, ^} are defined by:

• 𝑥 is a well-formed formula if 𝑥 is a numeral or variable.
• If 𝑓 and 𝑔 are well-formed formulae, then (𝑓 + 𝑔), (𝑓– 𝑔), (𝑓 ∗ 𝑔), (𝑓/𝑔), and (𝑓^𝑔)

are well-formed formulae

With this definition, we can construct formulas such as:
•(𝑥 – 𝑦)
•((𝑧 / 3) – 𝑦)
•((𝑧 / 3) – (6 + 5))
•((𝑧 / (2 ∗ 4)) – (6 + 5))

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting54

54

8/1/22

28

Recursive Algorithms

An algorithm is called recursive if it solves a problem by reducing it to
an instance of the same problem with smaller input.

Example 1: Recursive Euclidean Algorithm

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting55

55

Recursive Algorithms

Example 2: Recursive Fibonacci Algorithm

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting56

56

8/1/22

29

Recursive Algorithms

Recursive Fibonacci Evaluation:

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting57

f(4)

f(3)

f(2)

f(1) f(0)

f(1)

f(2)

f(1) f(0)

Exponential complexity!

57

Recursive Algorithms

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting58

Linear complexity 𝑂(𝑛)

58

8/1/22

30

Recursive Algorithms

For every recursive algorithm, there is an equivalent iterative
algorithm.

Recursive algorithms are often shorter, more elegant, and easier to
understand than their iterative counterparts.

However, iterative algorithms are usually more efficient in their use of
space and time.

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting59

59

Integer Properties
Chapter 4 in the textbook

60

8/1/22

31

Division

If 𝑎 and 𝑏 are integers with 𝑎 ¹ 0, we say that 𝑎 divides 𝑏 if there is an
integer 𝑐 so that 𝑏 = 𝑎𝑐.

When 𝑎 divides 𝑏 we say that 𝑎 is a factor of 𝑏 and that 𝑏 is 𝑎 multiple
of 𝑎.

The notation 𝒂 ∣ 𝒃means that 𝑎 divides 𝑏.

We write 𝒂 ∤ 𝒃 when 𝑎 does not divide 𝑏.

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting61

61

Divisibility Theorems

For integers 𝑎, 𝑏, and 𝑐 it is true that:
• if 𝑎|𝑏 and 𝑎|𝑐, then 𝑎|(𝑏 + 𝑐)

example: 3|6 and 3|9, so 3|15.

• if 𝑎|𝑏, then 𝑎|𝑏𝑐 for all integers 𝑐
example: 5 | 10, so 5 | 20, 5 | 30, 5 | 40, …

• if 𝑎|𝑏 and 𝑏|𝑐, then 𝑎|𝑐
example: 4|8 and 8|24, so 4|24.

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting62

62

8/1/22

32

Primes

A positive integer p greater than 1 is called prime if the only positive
factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime is called
composite.

The fundamental theorem of arithmetic:
• Every positive integer can be written uniquely as the product of primes,

where the prime factors are written in order of increasing size.

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting63

63

Primes

Examples:

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting64

3·5

48 =

17 =

100 =

512 =

515 =

28 =

15 =

2·2·2·2·3 = 24·3

17

2·2·5·5 = 22·52

2·2·2·2·2·2·2·2·2 = 29

5·103

2·2·7 = 22·7

64

8/1/22

33

Primes

If 𝑛 is a composite integer, then 𝑛 has a prime divisor less than or equal 𝑛 .

This is easy to see: if 𝑛 is a composite integer, it must have two divisors 𝑝#
and 𝑝0 such that 𝑝#×𝑝0 = 𝑛 and 𝑝#³ 2 and 𝑝0 ³ 2.

𝑝# and 𝑝0 cannot both be greater than 𝑛 , because then 𝑝#×𝑝0 would be
greater than 𝑛.

If the smaller number of 𝑝# and 𝑝0 is not a prime itself, then it can be broken
up into prime factors that are smaller than itself but ³ 2.

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting65

65

The Division Algorithm

Let 𝑎 be an integer and 𝑑 a positive integer. Then there are unique
integers 𝑞 and 𝑟, with 0 £ 𝑟 < 𝑑, such that 𝑎 = 𝑑𝑞 + 𝑟.
In the above equation:

𝑑 is called the divisor,
𝑎 is called the dividend,

𝑞 is called the quotient, and

𝑟 is called the remainder.

Example: When we divide 17 by 5, we have 17 = 5 ⋅ 3 + 2
• 5 is divisor, 17 is dividend, 3 is quotient, end 2 is remainder

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting66

66

8/1/22

34

The Division Algorithm

Another example:
What happens when we divide -11 by 3 ?
Note that the remainder cannot be negative.

−11 = 3×(−4) + 1.
-11 is the dividend,
3 is the divisor,
-4 is called the quotient, and
1 is called the remainder.

Applied Discrete Mathematics @ Class #5: Induction, Integer properties, Counting67

67

