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Counting Principle (Recap)

1

Basic counting principles recap

The sum rule: 
If we have tasks T1, T2, …, Tm that can be done in n1, n2, …, nm ways, 
respectively, and no two of these tasks can be done at the same time, 
then there are 𝑛1 + 𝑛2 + … + 𝑛𝑚 ways to do one of these tasks.

The product rule:

If we have a procedure consisting of sequential tasks T1, T2, …, Tm that 
can be done in 𝑛1, 𝑛2, … , 𝑛𝑚 ways, respectively, then there are 
𝑛1𝑛2…𝑛𝑚 ways to carry out the procedure.
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Basic counting principles recap

Inclusion-Exclusion (Subtraction Rule)
If a task can be done in either 𝑛! ways or 𝑛" ways, then the number of 
ways to do the task is 𝑛! + 𝑛" minus the number of ways to do the 
task that are common to the two different ways. 

The division rule:

There are 𝑛 ∕ 𝑑 ways to do a task if it can be done using a procedure 
that can be carried out in 𝑛 ways, and for every way 𝑤, exactly 𝑑 of the 
𝑛 ways correspond to way 𝑤
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Basic counting principles recap

Pigeonhole principle
If k is a positive integer and k + 1 or more objects are placed into k
boxes, then there is at least one box containing two or more of the 
objects

Generalized pigeonhole principle:

If N objects are placed into k boxes, then there is at least one box 
containing at least ⌈N∕k⌉ objects 

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability4

4



8/8/22

3

Basic counting principles recap

Tree Diagrams – A useful method to solve counting problems

Example 1:
A playoff between two teams consists of at most five games. The first 
team that wins three games  wins the playoff. In how many different 
ways can the playoff occur? 
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Example 2:
Suppose that “I Love UMB” T-shirts come in five different sizes: S, M, L,
XL, and XXL. Further suppose that each size comes in four colors, white, 
red, green, and black, except for XL, which comes only in red, green, 
and black, and XXL, which comes only in green and black. How many 
different shirts does a souvenir shop have to stock to have at least one 
of each available size and color of the T-shirt? 
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Basic counting principles recap

Example 3:
Tossing a coin and then roll a 6-side die. How many cases can be 
happened (using tree diagram)?
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Advanced Counting
Chapter 8 in the textbook
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Permutations and Combinations

How many different sets of 3 people can we pick from a group of 6?
• There are 6 choices for the first person, 5 for the second one, and 4 for the 

third one, so there are 6×5×4 = 120 ways to do this.

This is not the correct result!

For example, picking person C, then person A, and then person E leads 
to the same group as first picking E, then C, and then A.

However, these cases are counted separately in the above equation.
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Permutations and Combinations

So how can we compute how many different subsets of people can be picked 
(that is, we want to disregard the order of picking) ?

To find out about this, we need to look at permutations.

A permutation of a set of distinct objects is an ordered arrangement of these 
objects.

An ordered arrangement of r elements of a set is called an r-permutation.
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Permutations and Combinations

Example: Let 𝑆 = {1, 2, 3}.
The arrangement 3, 1, 2 is a permutation of S.
The arrangement 3, 2 is a 2-permutation of S.

The number of r-permutations of a set with 𝑛 distinct elements is denoted by 
𝑷(𝒏, 𝒓).

We can calculate 𝑃(𝑛, 𝑟) with the product rule:

𝑃 𝑛, 𝑟 = 𝑛× 𝑛 – 1 × 𝑛 – 2 ×… ×(𝑛 – 𝑟 + 1).
(n choices for the first element, (n – 1) for the second one, (n – 2) for the third 
one…)
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Permutations and Combinations

Example: 
P(8, 3) = 8×7×6 = 336

= (8×7×6×5×4×3×2×1)/(5×4×3×2×1)

General formula: 𝑃 𝑛, 𝑟 = #!
(#&')!

Knowing this, we can answer the question: In how many ways can we 
give gold-medal, silver-metal, bronze-medal to a group of 5 runners? 
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Permutations and Combinations

An r-combination of elements of a set is an unordered selection of r 
elements from the set. Thus, an r-combination is simply a subset of the 
set with r elements.

Example: Let S = {1, 2, 3, 4}. Then {1, 3, 4} is a 3-combination from S.

The number of r-combinations of a set with n distinct elements is 
denoted by 𝐶(𝑛, 𝑟).

Example:
𝐶(4, 2) = 6, since, for example, the 2-combinations of a set {1, 2, 3, 4} are:
{1, 2}, {1, 3}, {1, 4}, {2, 3},  {2, 4}, {3, 4}.
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Permutations and Combinations

How can we calculate 𝐶(𝑛, 𝑟)?
Consider that we can obtain the r-permutations of a set in the following 
way:

First, we form all the r-combinations of the set (there are C(n, r) such r-
combinations).
Then, we generate all possible orderings within each of these r-
combinations (there are P(r, r) such orderings in each case).

Therefore, we have: 𝑃(𝑛, 𝑟) = 𝐶(𝑛, 𝑟)×𝑃(𝑟, 𝑟)
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Permutations and Combinations

𝐶 𝑛, 𝑟 =
𝑃 𝑛, 𝑟
𝑃(𝑟, 𝑟) =

𝑛!
𝑛 – 𝑟 ! /

𝑟!
𝑟 – 𝑟 ! =

𝑛!
𝑟! 𝑛 – 𝑟 !

Now we can answer our initial question:

How many ways are there to pick a set of 3 people from a group of 6 
(disregarding the order of picking)?

𝐶 6, 3 =
6!
3! ×3! =

720
6×6 =

720
36 = 20

There are 20 different ways, that is, 20 different groups to be picked.

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability17
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Permutations and Combinations

Corollary:
Let 𝑛 and 𝑟 be nonnegative integers with 𝑟 £ 𝑛.
Then 𝐶(𝑛, 𝑟) = 𝐶(𝑛, 𝑛 – 𝑟).

Note that “picking a group of 𝑟 people from a group of 𝑛 people” is the 
same as “splitting a group of 𝑛 people into a group of 𝑟 people and 
another group of (𝑛 – 𝑟) people”. 
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Combinations

Proof: 𝐶 𝑛, 𝑛 − 𝑟 = #!
#&' ! #& #&' !

= #!
#&' !'!

= 𝐶 𝑛, 𝑟

This symmetry is intuitively plausible. For example, let us consider a set 
containing six elements (n = 6).

Picking two elements and leaving four is essentially the same as picking 
four elements and leaving two.

In either case, our number of choices is the number of possibilities to 
divide the set into one set containing two elements and another set 
containing four elements.

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability19
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Permutations and Combinations

Example:
A soccer club has 8 female and 7 male members. For today’s match, the 
coach wants to have 6 female and 5 male players on the grass. How 
many possible configurations are there?

𝐶 8, 6 × 𝐶 7, 5 =
8!
6! ×2!

×
7!
5! ×2!

= 28×21 = 588

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability20
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Combinations

Pascal’s Identity: 

• Let 𝑛 and 𝑘 be positive integers with 𝑛 ≥ 𝑘.
Then 𝐶(𝑛 + 1, 𝑘) = 𝐶(𝑛, 𝑘 – 1) + 𝐶(𝑛, 𝑘).

•How can this be explained?

•What is it good for?

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability21
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Combinations

Imagine a set 𝑆 containing n elements and a set 𝑇 containing (n + 1) 
elements, namely all elements in 𝑆 plus a new element 𝑎.

Calculating 𝐶(𝑛 + 1, 𝑘) is equivalent to answering the question: How 
many subsets of 𝑇 containing 𝑘 items are there?
• Case 1: The subset contains (𝑘 – 1) elements of 𝑆 plus the element 𝑎: 
𝐶(𝑛, 𝑘 – 1) choices.
• Case 2: The subset contains 𝑘 elements of 𝑆 and does not contain 𝑎: 𝐶(𝑛, 𝑘)

choices.

Sum Rule: 𝐶(𝑛 + 1, 𝑘) = 𝐶(𝑛, 𝑘 – 1) + 𝐶(𝑛, 𝑘).

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability22
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Pascal’s Triangle

In Pascal’s triangle, each number is the sum of the numbers to its upper 
left and upper right:

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability23
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Pascal’s Triangle

Since we have 𝐶(𝑛 + 1, 𝑘) = 𝐶(𝑛, 𝑘 – 1) + 𝐶(𝑛, 𝑘) and 𝐶(0, 0) = 1, 
we can use Pascal’s triangle to simplify the computation of 𝐶(𝑛, 𝑘):

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability24

C(0, 0) = 1

C(1, 0) = 1 C(1, 1) = 1

C(2, 0) = 1 C(2, 1) = 2 C(2, 2) = 1

C(3, 0) = 1 C(3, 1) = 3 C(3, 2) = 3 C(3, 3) = 1

C(4, 0) = 1 C(4, 1) = 4 C(4, 2) = 6 C(4, 3) = 4 C(4, 4) = 1

k

n
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Binomial Coefficients

Expressions of the form 𝐶(𝑛, 𝑘) are also called binomial coefficients.
How does it come?

A binomial expression is the sum of two terms, such as (𝑎 + 𝑏).
Now consider 𝑎 + 𝑏 " = (𝑎 + 𝑏)(𝑎 + 𝑏).
When expanding such expressions, we have to form all possible 
products of a term in the first factor and a term in the second factor:

𝑎 + 𝑏 " = 𝑎" + 𝑎𝑏 + 𝑏𝑎 + 𝑏" = 𝑎" + 2𝑎𝑏 + 𝑏"

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability25
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Binomial Coefficients

For 𝑎 + 𝑏 $ = (𝑎 + 𝑏)(𝑎 + 𝑏)(𝑎 + 𝑏)
we have:

𝑎 + 𝑏 3 = 𝑎𝑎𝑎 + 𝑎𝑎𝑏 + 𝑎𝑏𝑎 + 𝑎𝑏𝑏 + 𝑏𝑎𝑎 + 𝑏𝑎𝑏 + 𝑏𝑏𝑎 + 𝑏𝑏𝑏

= 𝑎$ + 3𝑎&𝑏 + 3𝑎𝑏& + 𝑏$

There is only one term 𝑎3, because there is only one possibility to form it: 
Choose 𝑎 from all three factors: 𝐶(3, 3) = 1.
There is three times the term 𝑎&𝑏, because there are three possibilities to 
choose 𝑎 from a subset of two out of the three factors: 𝐶(3, 2) = 3.
Similarly, there is three times the term 𝑎𝑏&
(𝐶(3, 1) = 3) and once the term 𝑏$ (𝐶(3, 0) = 1).

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability26

26



8/8/22

14

Binomial Coefficients

This leads us to the following formula:

𝑎 + 𝑏 # =A
)*+

#

𝐶 𝑛, 𝑗 ⋅ 𝑎#&)𝑏)

With the help of Pascal’s triangle, this formula can considerably simplify the 
process expanding power of binomial expression.

For example, the fifth row of Pascal’s triangle (1 − 4 − 6 − 4 − 1) helps us to 
compute 𝑎 + 𝑏 '

𝑎 + 𝑏 ' = 𝑎' + 4𝑎$𝑏 + 6𝑎&𝑏& + 4𝑎𝑏$ + 𝑏'

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability27

(Binomial Theorem)
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Discrete Probability 
Chapter 7 in the textbook
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Discrete Probability

Everything you have learned about counting constitutes the basis for 
computing the probability of events to happen.

In the following, we will use the notion experiment for a procedure 
that yields one of a given set of possible outcomes.

This set of possible outcomes is called the sample space of the 
experiment.

An event is a subset of the sample space.

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability29

29

Discrete Probability

If all outcomes in the sample space are equally likely, the following 
definition of probability applies:

The probability of an event E, which is a subset of a finite sample space 

S of equally likely outcomes, is given by 𝑝(𝐸) = ,
-

Probability values range from 0 (for an event that will never happen) to 
1 (for an event that will always happen whenever the experiment is 
carried out).

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability30

30



8/8/22

16

Discrete Probability

Example 1: An urn contains four blue balls and five red balls. What is 
the probability that a ball chosen from the urn is blue?

Solution: 

There are nine possible outcomes, and the event “blue ball is chosen” 
comprises four of these outcomes. Therefore, the probability of this 
event is 4/9 or approximately 44.44%.

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability31
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Discrete Probability

Example 2:

What is the probability of winning the lottery 6/49, that is, picking the 
correct set of six numbers out of 49?

Solution: There are C(49, 6) possible outcomes. Only one of these 
outcomes will make us win the lottery.

𝑝 𝐸 =
1

𝐶 49, 6
=

1
13,983,816

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability32
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Discrete Probability

Example 3: What is the probability of winning the lottery 6/49, that is, 
picking the correct set of six numbers out of 49?

Solution: There are C(49, 6) possible outcomes. Only one of these 
outcomes will actually make us win the lottery.

𝑝 𝐸 =
1

𝐶 49, 6
=

1
13,983,816

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability33
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Complementary Events

Let 𝐸 be an event in a sample space 𝑆. The probability of an event –𝐸, 
the complementary event of 𝐸, is given by

𝑝(−𝐸) = 1 – 𝑝(𝐸).

This can easily be shown:

𝑝 −𝐸 =
𝑆 − 𝐸

𝑆
= 1 −

𝐸
𝑆
= 1 – 𝑝(𝐸).

This rule is useful if it is easier to determine the probability of the 
complementary event than the probability of the event itself.  

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability34
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Complementary Events

Example 1: A sequence of 10 bits is randomly generated. What is the probability that at 
least one of these bits is zero?

Solution: There are 210 = 1024 possible outcomes of generating such a sequence. The 
event –𝐸, “none of the bits is zero”, includes only one of these outcomes, namely the 
sequence 1111111111.

Therefore, 𝑝 −𝐸 = !
!"#$

Now 𝑝 𝐸 can easily be computed as

𝑝 𝐸 = 1 – 𝑝 −𝐸 = 1 – !
!"#$

= !"#%
!"#$

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability35

35

Complementary Events

Example 2: What is the probability that at least two out of 36 people have 
the same birthday?

Solution: The sample space S encompasses all possibilities for the birthdays 
of the 36 people, so |S| = 36536.
Let us consider the event –E (“no two people out of 36 have the same 
birthday”). –E includes P(365, 36) outcomes (365 possibilities for the first 
person’s birthday, 364 for the second, and so on). 

Then 𝑝 −𝐸 = ( $)*,$)
$)*!"

= 0.168, so p(E) = 0.832 or 83.2%

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability36
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Complementary Events

Example 3: Given a deck of 52 cards, we draw 5. What is probability of 
getting
1. 3 Aces and 2 Jacks ?

2. 3 Aces and a pair

Solution:

1. P(E) = , ',$ ⋅, ',&
,(*&,*)

2. P(E) = , ',$ ⋅, 0&,0 ⋅, ',&
,(*&,*)

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability37
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Discrete Probability

Let E1 and E2 be events in the sample space S.
Then we have:

𝑝(𝐸1 È 𝐸2) = 𝑝(𝐸1) + 𝑝(𝐸2)

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability38

− 𝑝(𝐸1 Ç 𝐸2)

Does this remind you of something?

Of course, the principle of inclusion-exclusion.
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Discrete Probability

Example: What is the probability of a positive integer selected at random 
from the set of positive integers not exceeding 100 to be divisible by 2 or 5? 

Solution:

E2: “integer is divisible by 2”

E5: “integer is divisible by 5”

E2 = {2, 4, 6, …, 100}

|E2| = 50

p(E2) = 0.5

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability39
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Discrete Probability

E5 = {5, 10, 15, …, 100}
|E5| = 20
p(E5) = 0.2

E2 Ç E5 = {10, 20, 30, …, 100}
|E2 Ç E5| = 10
p(E2 Ç E5) = 0.1

p(E2 È E5) = p(E2) + p(E5) – p(E2 Ç E5 )
p(E2 È E5) = 0.5 + 0.2 – 0.1 = 0.6

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability40
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Discrete Probability

What happens if the outcomes of an experiment are not equally likely?

In that case, we assign a probability 𝑝(𝑠) to each outcome 𝑠Î𝑆, where 𝑆 is the 
sample space.

Two conditions have to be met:
(1):   0 £ 𝑝(𝑠) £ 1 for each 𝑠Î𝑆, and

(2):   å1∈3𝑝(𝑠) = 1

This means, as we already know, that (1) each probability must be a value between 
0 and 1, and (2) the probabilities must add up to 1, because one of the outcomes is 
guaranteed to occur.

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability41
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Discrete Probability

How can we obtain these probabilities 𝑝(𝑠) ?

The probability 𝑝(𝑠) assigned to an outcome 𝑠 equals the limit of the 
number of times 𝑠 occurs divided by the number of times the 
experiment is performed.

Once we know the probabilities 𝑝(𝑠), we can compute the probability 
of an event E as follows:

𝑝 𝐸 = å.∈, 𝑝(𝑠)

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability42
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Discrete Probability

Example 1: A die is biased so that the number 3 appears twice as often as 
each other number. What are the probabilities of all possible outcomes?

Solution: There are 6 possible outcomes s1, …, s6.
p(s1) = p(s2) = p(s4) = p(s5) = p(s6)
p(s3) = 2p(s1)
Since the probabilities must add up to 1, we have:
5p(s1) + 2p(s1) = 1
7p(s1) = 1
p(s1) = p(s2) = p(s4) = p(s5) = p(s6) = 1/7, p(s3) = 2/7

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability43
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Discrete Probability

Example 2: For the biased die from Example 1, what is the probability 
that an odd number appears when we roll the die?

Solution:

Eodd = {s1, s3, s5}

Remember the formula p(E) = åsÎE p(s).

p(Eodd) = åsÎEodd p(s) = p(s1) + p(s3) + p(s5)
p(Eodd) = 1/7 + 2/7 + 1/7 = 4/7 = 57.14%

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability44
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Conditional Probability

If we toss a coin three times, what is the probability that an odd 
number of tails appears (event E), if the first toss is a tail (event F) ?

If the first toss is a tail, the possible sequences are TTT, TTH, THT, and 
THH. 
In two out of these four cases, there is an odd number of tails. 

Therefore, the probability of E, under the condition that F occurs, is 0.5.
We call this conditional probability. 

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability45
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Conditional Probability

If we want to compute the conditional probability of 𝐸 given 𝐹, we use 
𝐹 as the sample space. For any outcome of 𝐸 to occur under the 
condition that 𝐹 also occurs, this outcome must also be in 𝐸 Ç 𝐹.

Definition: Let 𝐸 and 𝐹 be events with 𝑝(𝐹) > 0. The conditional 
probability of 𝐸 given 𝐹, denoted by 𝑝(𝐸 | 𝐹), is defined as

𝑝(𝐸 | 𝐹) =
𝑝(𝐸 ∩ 𝐹)
𝑝(𝑓)

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability46
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Conditional Probability
Example 1: What is the probability of a random bit string of length four to contain at least two consecutive 0s, 
given that its first bit is a 0 ?

Solution:

E: “bit string contains at least two consecutive 0s”

F: “first bit of the string is a 0”

We know the formula  𝑝(𝐸 ∣ 𝐹) = # $∩&
# &

E Ç F = {0000, 0001, 0010, 0011, 0100}

p(E Ç F) = 5/16

p(F) = 8/16 = 1/2

p(E | F) = (5/16)/(1/2) = 10/16 = 5/8 = 0.625

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability47
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Conditional Probability

Example 2: Rolling a pair of dice.
What is probability to get a double that has the sum is at least 9

Solution

E: A double is rolled
F: The sum is at least 9

P(E|F) = P(E∩F)/P(F) 
= 2/10 = 20%

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability48

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,2) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
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Independence

Let us return to the example of tossing a coin three times.
Does the probability of event E (odd number of tails) depend on the 
occurrence of event F (first toss is a tail) ?
In other words, is it the case that p(E | F) ¹ p(E) ?

We actually find that p(E|F) = 0.5 and p(E) = 0.5, so we say that E and F
are independent events.
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Independence

Because we have:

𝑝(𝐸|𝐹) = 0 ,∩2
0 2

, 𝑝(𝐸|𝐹) = 𝑝(𝐸) iff 𝑝(𝐸 Ç 𝐹) = 𝑝(𝐸)𝑝(𝐹).

Definition: The events E and F are said to be independent if and only if 
p(E Ç F) = p(E)p(F).

Obviously, this definition is symmetrical for E and F. If we have 
𝑝(𝐸 Ç 𝐹) = 𝑝(𝐸)𝑝(𝐹), then it is also true that 𝑝(𝐹|𝐸) = 𝑝(𝐹).
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Independence

Example: Suppose E is the event of rolling an even number with an unbiased 
die. F is the event that the resulting number is divisible by three. Are events 
E and F independent? 

Solution:
p(E) = 1/2, p(F) = 1/3.
|E Ç F|= 1   (only 6 is divisible by both 2 and 3)
p(E Ç F) = 1/6
p(E Ç F) = p(E)p(F)
Conclusion: E and F are independent.
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Bernoulli Trials
Suppose an experiment with two possible outcomes, such as tossing a coin.  
Each performance of such an experiment is called a Bernoulli trial.

We will call the two possible outcomes a success or a failure, respectively.

If p is the probability of a success and q is the probability of a failure, it is 
obvious that p + q = 1.
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Bernoulli Trials

Often, we are interested in the probability of exactly k successes when 
an experiment consists of n independent Bernoulli trials.

Example:
A coin is biased so that the probability of head is 2/3. What is the 
probability of exactly four heads to come up when the coin is tossed 
seven times?
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Bernoulli Trials

Solution:
There are 27 = 128 possible outcomes.

The number of possibilities for four heads among the seven trials is C(7, 
4).

The seven trials are independent, so the probability of each of these 
outcomes is (2/3)4(1/3)3.

Consequently, the probability of exactly four heads to appear is
C(7, 4)(2/3)4(1/3)3 = 560/2187 = 25.61%
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Bernoulli Trials

Illustration: Let us denote a success by ‘S’ and a failure by ‘F’. As before, 
we have a probability of success p and probability of failure q = 1 – p.

What is the probability of two successes in five independent Bernoulli 
trials?

Let us look at a possible sequence:

SSFFF

What is the probability that we will generate exactly this sequence?
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Bernoulli Trials

Each sequence with two successes in five trials occurs with 
probability p2q3.

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability56

Sequence:

Probability:

S

p

S

×p

F F F

×q ×q ×q =  p2q3

Another possible sequence:

Sequence:

Probability:

F

q

S

×p

F S F

×q ×p ×q =  p2q3

56



8/8/22

29

Bernoulli Trials

And how many possible sequences are there?
In other words, how many ways are there to pick two items from a list of 
five?
We know that there are C(5, 2) = 10 ways to do this, so there are 10 possible 
sequences, each of which occurs with a probability of p2q3.
Therefore, the probability of any such sequence to occur when performing 
five Bernoulli trials is
C(5, 2) p2q3.
In general, for k successes in n Bernoulli trials we have a probability of 
C(n,k)pkqn-k
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Random Variables
In some experiments, we would like to assign a numerical value to each possible 
outcome in order to facilitate a mathematical analysis of the experiment.

For this purpose, we introduce random variables.

Definition: A random variable is a function from the sample space of an experiment 
to the set of real numbers. That is, a random variable assigns a real number to each 
possible outcome.

Note: Random variables are functions, not variables, and they are not random, but 
map random results from experiments onto real numbers in a well-defined manner.
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Random Variables
Example:

Let X be the result of a rock-paper-scissors game.
If player A chooses symbol a and player B chooses symbol b, then 

X(a, b) = 1, if player A wins,
= 0, if A and B choose the same symbol, 
= -1, if player B wins.
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Random Variables
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0 
X(rock, paper) = -1

X(rock, scissors) = 1
X(paper, rock) = 1

X(paper, paper) = 0
X(paper, scissors) = -1

X(scissors, rock) = -1
X(scissors, paper) = 1

X(scissors, scissors) = 0

X(rock, rock) = 
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Expected Values
Once we have defined a random variable for our experiment, we can 
statistically analyze the outcomes of the experiment.

For example, we can ask: What is the average value (called the 
expected value) of a random variable when the experiment is carried 
out a large number of times?

Can we just calculate the arithmetic mean across all possible values of 
the random variable?
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Expected Values
No, we cannot, since it is possible that some outcomes are more likely 
than others.

For example, assume the possible outcomes of an experiment are 1 
and 2 with probabilities of 0.1 and 0.9, respectively.

Is the average value 1.5?

No, since 2 is much more likely to occur than 1, the average must be 
larger than 1.5.
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Expected Values
Instead, we have to calculate the weighted sum of all possible outcomes, that is, each 
value of the random variable has to be multiplied with its probability before being added to 
the sum.

In our example, the average value is given by
0.1×1 + 0.9×2 = 0.1 + 1.8 = 1.9.

Definition: The expected value (or expectation) of the random variable X(s) on the sample 
space S is equal to:

𝐸(𝑋) = 1
&∈(

𝑝 𝑠 𝑋(𝑠)
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Expected Values
Example: Let X be the random variable equal to the sum of the numbers that 
appear when a pair of dice is rolled.

There are 36 outcomes (= pairs of numbers from 1 to 6).

The range of X is {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Are the 36 outcomes equally likely?

Yes, if the dice are not biased.

Are the 11 values of X equally likely to occur?

No, the probabilities vary across values.
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Expected Values

Applied Discrete Mathematics @ Class #7: Advanced Counting, Probability65

P(X = 2) = 1/36

P(X = 3) = 2/36 = 1/18

P(X = 4) = 3/36 = 1/12

P(X = 5) = 4/36 = 1/9

P(X = 6) = 5/36 

P(X = 7) = 6/36 = 1/6

P(X = 8) = 5/36

P(X = 9) = 4/36 = 1/9

P(X = 10) = 3/36 = 1/12

P(X = 11) = 2/36 = 1/18

P(X = 12) = 1/36

65

Expected Values

E(X) = 2×(1/36) + 3×(1/18) + 4×(1/12) + 5×(1/9) +
6×(5/36) + 7×(1/6) + 8×(5/36) + 9×(1/9) +
10×(1/12) + 11×(1/18) + 12×(1/36)

E(X) = 7

This means that if we roll the dice many times, sum all the numbers 
that appear and divide the sum by the number of trials, we expect to 
find a value of 7.
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Expected Values
Theorem:
If X and Y are random variables on a sample space S, then 

𝐸(𝑋 + 𝑌) = 𝐸(𝑋) + 𝐸(𝑌).

Furthermore, if 𝑋3 , 𝑖 = 1, 2, … , 𝑛 with a positive integer n, are random 
variables on S, then

𝐸(𝑋! + 𝑋" +⋯+ 𝑋#) = 𝐸(𝑋!) + 𝐸(𝑋") + ⋯+ 𝐸(𝑋#).

Moreover, if a and b are real numbers, then 
𝐸(𝑎𝑋 + 𝑏) = 𝑎𝐸(𝑋) + 𝑏.
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Expected Values
Knowing this theorem, we could now solve the previous example much more 
easily:

Let 𝑋0 and 𝑋& be the numbers appearing on the first and the second die, 
respectively.

For each die, there is an equal probability for each of the six numbers to 
appear. Therefore, 𝐸(𝑋0) = 𝐸(𝑋&) = (1 + 2 + 3 + 4 + 5 + 6)/6 = 7/2.

We now know that  𝐸(𝑋0 + 𝑋&) = 𝐸(𝑋0) + 𝐸(𝑋&) = 7.
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Expected Values

We can use our knowledge about expected values to compute the average-
case complexity of an algorithm.
Let the sample space be the set of all possible inputs 𝑎1, 𝑎2, … , 𝑎𝑛, and the 
random variable 𝑋 assign to each 𝑎𝑗 the number of operations that the 
algorithm executes for that input.
For each input 𝑎𝑗 , the probability that this input occurs is given by 𝑝(𝑎𝑗).
The algorithm’s average-case complexity then is:

𝐸(𝑋) = A
:;0,…,=

𝑝 𝑎: 𝑋 𝑎:
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Expected Values

However, in order to conduct such an average-case analysis, you would 
need to find out:

the number of steps that the algorithms takes for any (!) possible 
input, and the probability for each of these inputs to occur.

For most algorithms, this would be a highly complex task, so we will 
stick with the worst-case analysis.
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Independent Random Variables

Definition: The random variables X and Y on a sample space S are 
independent if

𝑝 𝑋 𝑠 = 𝑟1 Ù 𝑌 𝑠 = 𝑟2 = 𝑝 𝑋 𝑠 = 𝑟1 × 𝑝(𝑌(𝑠) = 𝑟2).

In other words, 𝑋 and 𝑌 are independent if the probability that 
𝑋(𝑠) = 𝑟!Ù𝑌(𝑠) = 𝑟" equals the product of the probability that 
𝑋(𝑠) = 𝑟1 and the probability that 𝑌(𝑠) = 𝑟" for all real numbers 𝑟1
and 𝑟2.
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Independent Random Variables
Example: Are the random variables X1 and X2 from the “pair of dice” example 
independent?

Solution:
p(X1 = i) = 1/6
p(X2 = j) = 1/6
p(X1 = i Ù X2 = j) = 1/36

Since p(X1 = i Ù X2 = j) = p(X1 = i)×p(X2 = j) ,
the random variables X1 and X2 are independent.
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Independent Random Variables

Theorem: If X and Y are independent random variables on a sample 
space S, then E(XY) = E(X)E(Y).

Note:

E(X + Y) = E(X) + E(Y) is true for any X and Y, but
E(XY) = E(X)E(Y) needs X and Y to be independent.

How come?
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Independent Random Variables
Example: Let X and Y be random variables on some sample space, and 
each of them assumes the values 1 and 3 with equal probability. Then 
E(X) = E(Y) = 2

If X and Y are independent, we have:
E(X + Y) = 1/4·(1 + 1) + 1/4·(1 + 3) + 

1/4·(3 + 1) + 1/4·(3 + 3) = 4 = E(X) + E(Y)
E(XY) = 1/4·(1·1) + 1/4·(1·3) + 

1/4·(3·1) + 1/4·(3·3) = 4 = E(X)·E(Y)
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Independent Random Variables
Let us now assume that X and Y are correlated in such a way that Y = 1 
whenever X = 1, and Y = 3 whenever X = 3.

E(X + Y) = 1/2·(1 + 1) + 1/2·(3 + 3)  = 4 = E(X) + E(Y)

E(XY) = 1/2·(1·1) + 1/2·(3·3)  = 5 ¹ E(X)·E(Y)
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