

UMa Bost

Introduction to Graphs

Definition: A multigraph G = (V, E) consists of a set V of vertices, a set E of edges, and a function $f: E \rightarrow \{\{u, v\} \mid u, v \in V, u \neq v\}$. The edges e_1 and e_2 are called multiple or parallel edges if $f(e_1) = f(e_2)$.

Note:

3

• Edges in multigraphs are not necessarily defined as pairs, but can be of any type.

• No loops are allowed in multigraphs ($u \neq v$).

Applied Discrete Mathematics @ Class #8: Graphs

Туре	Edge	Multiple Edges Allowed	Allow loops
Simple graph	Undirected	No	No
Multigraph	Undirected	Yes	No
Pseudo graph	Undirected	Yes	Yes
Simple directed graph	Directed	No	No
Directed multigraph	Directed	Yes	Yes
Mixgraph	Directed & Undirected	Yes	Yes

Graph Terminology

Definition: Two vertices u and v in an undirected graph G are called **adjacent** (or **neighbors**) in G if $\{u, v\}$ is an edge in G.

If $e = \{u, v\}$, the edge e is called **incident with** the vertices u and v. The edge e is also said to **connect** u and v.

The vertices u and v are called **endpoints** of the edge $\{u, v\}$.

Applied Discrete Mathematics @ Class #8: Graphs

11

<text><text><image><text>

Graph Terminology

The Handshaking Theorem: Let G = (V, E) be an undirected graph with e edges. Then $2e = \sum_{v \in V} \deg(v)$

Note: This theorem holds even if multiple edges and/or loops are present.

Example: How many edges are there in a graph with 10 vertices, each of degree 6?

Solution: The sum of the degrees of the vertices is $6 \cdot 10 = 60$. According to the Handshaking Theorem, it follows that 2e = 60, so there are 30 edges.

16

<section-header><section-header><section-header><text><text><text><page-footer>

Special Graphs Definition: The cycle C_n , $n \ge 3$, consists of n vertices $v_1, v_2, ..., v_n$ and edges $\{v_1, v_2\}, \{v_2, v_3\}, ..., \{v_{n-1}, v_n\}, \{v_n, v_1\}.$ $ightarrow C_3 \ C_4 \ C_5 \ C_6$

Special Graphs

Definition: The **n-cube**, denoted by Q_n , is the graph that has vertices representing the 2^n bit strings of length n. Two vertices are adjacent if and only if the bit strings that they represent differ in exactly one bit position.

Special Graphs

Definition: A simple graph is called **bipartite** if its vertex set V can be partitioned into two disjoint nonempty sets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 with a vertex in V_2 (so that no edge in G connects either two vertices in V_1 or two vertices in V_2).

For example, consider a graph that represents each person in a mixeddoubles tennis tournament (i.e., teams consist of one female and one male player). Players of the same team are connected by edges.

This graph is **bipartite**, because each edge connects a vertex in the **subset of males** with a vertex in the **subset of females**.

Applied Discrete Mathematics @ Class #8: Graphs

Representing Graphs

Definition: Let G = (V, E) be a simple graph with |V| = n. Suppose that the vertices of G are listed in arbitrary order as $v_1, v_2, ..., v_n$.

The **adjacency matrix** A (or A_G) of G, with respect to this listing of the vertices, is the n×n zero-one matrix with 1 as its (i, j)th entry when v_i and v_j are adjacent, and 0 otherwise.

In other words, for an adjacency matrix $A = [a_{ij}]$,

$$a_{ij} = \begin{cases} 1 & \text{if } \{v_i, v_j\} \text{ is an edge of G} \\ 0 & \text{otherwise} \end{cases}$$

Applied Discrete Mathematics @ Class #8: Graphs

Representing Graphs

Definition: Let G = (V, E) be an undirected graph with |V| = n and |E| = m. Suppose that the vertices and edges of G are listed in arbitrary order as v_1 , v_2 , ..., v_n and e_1 , e_2 , ..., e_m , respectively.

The **incidence matrix** of G with respect to this listing of the vertices and edges is the $n \times m$ zero-one matrix with 1 as its (i, j)th entry when edge e_i is incident with vertex v_i , and 0 otherwise.

In other words, for an incidence matrix $M = [m_{ij}]$,

 $m_{ij} = \left\{ egin{array}{cc} 1 & ext{if edge } e_j ext{ is an incident with } v_i \ 0 & ext{otherwise} \end{array}
ight.$

Applied Discrete Mathematics @ Class #8: Graphs

Isomorphism of Graphs

Definition: The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are **isomorphic** if there is a bijective function $f : V_1 \rightarrow V_2$ with the property that a and b are adjacent in G_1 if and only if f(a) and f(b) are adjacent in G_2 , for all a and b in V_1 .

Such a function *f* is called an **isomorphism**.

In other words, G_1 and G_2 are isomorphic if their vertices can be ordered in such a way that the adjacency matrices M_{G_1} and M_{G_2} are identical.

40

Isomorphism of Graphs Example II: How about these two graphs? a ۵ b e e С С d Solution: No, they are not isomorphic, because they differ in the degrees of their vertices. Vertex d in right graph is of degree one, but there is no such vertex in the left graph. 44 Applied Discrete Mathematics @ Class #8: Graphs

Connectivity

Definition: A **path** of length n from u to v, where n is a positive integer, in an **undirected graph** is a sequence of edges $e_1, e_2, ..., e_n$ of the graph such that $f(e_1) = \{x_0, x_1\}, f(e_2) = \{x_1, x_2\}, ..., f(e_n) = \{x_{n-1}, x_n\}$, where $x_0 = u$ and $x_n = v$. When the graph is simple, we denote this path by its **vertex sequence** $x_0, x_1, ..., x_n$, since it uniquely determines the path.

The path is a **circuit** if it begins and ends at the same vertex, that is, if u = v.

Applied Discrete Mathematics @ Class #8: Graphs

45

45

<section-header><section-header><section-header><section-header><section-header><section-header><text>

Connectivity

Definition: A **path** of length n from u to v, where n is a positive integer, in a **directed multigraph** is a sequence of edges e_1 , e_2 , ..., e_n of the graph such that $f(e_1) = (x_0, x_1)$, $f(e_2) = (x_1, x_2)$, ..., $f(e_n) = (x_{n-1}, x_n)$, where $x_0 = u$ and $x_n = v$.

When there are no multiple edges in the path, we denote this path by its **vertex sequence** $x_0, x_1, ..., x_n$, since it uniquely determines the path.

The path is a **circuit** if it begins and ends at the same vertex, that is, if u = v.

A path or circuit is called **simple** if it does not contain the same edge more than once.

47

47

Connectivity

Let us now look at something new:

Applied Discrete Mathematics @ Class #8: Graphs

Definition: An undirected graph is called **connected** if there is a path between every pair of distinct vertices in the graph.

For example, any two computers in a network can communicate if and only if the graph of this network is connected.

Note: A graph consisting of only one vertex is always connected, because it does not contain any pair of distinct vertices.

48

Connectivity

Theorem: There is a **simple** path between every pair of distinct vertices of a connected undirected graph.

Definition: A graph that is not connected is the union of two or more connected subgraphs, each pair of which has no vertex in common. These disjoint connected subgraphs are called the **connected components** of the graph.

50

