Graph (continue)

Section 10 in the textbook

Euler Paths and Circuits

Theorem: A connected multigraph with at least two vertices has an Euler circuit if and only if each of **its vertices has even degree**. Proof:

(A) If there's an Euler circuit, then every vertex has even degree

Applied Discrete Mathematics @ Class #9: Graph problems

- Suppose the Euler Circuit begin with a vertex a, and continue with an edge incident with a, say $\{a, b\}$. The edge $\{a, b\}$ contribute 1 to deg(a)

- Each time the circuit passes through a vertex, it contributes two to the vertex's degree. (one when entering, and one when leaving)

- Finally, the circuit terminates where it started, contributes on to deg(a)

- Therefore, deg(a) must be even. A vertex other than a has even degree.

5

Euler Paths and Circuits

- An Euler circuit has been constructed if all the edges have been used. Otherwise, consider the subgraph *H* obtained from *G* by deleting the edges already used and vertices that are not incident with any remaining edges.
- G is connected, H has at least one vertex w in common with the circuit that has been deleted.
- Every vertex in H has even degree because in G all vertices had even degree, and for each vertex, pairs of edges incident with this vertex have been deleted to form H.
- Beginning at w, construct a simple path in H by choosing edges as long as possible, as was done in G. This path must terminate at w.
- Next, form a circuit in G by splicing the circuit in H with the original circuit in G (this can be done because w is one of the vertices in this circuit). Continue this process until all edges have been used. This produces an Euler circuit.

Applied Discrete Mathematics @ Class #9: Graph problems

7

7

budge b

