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Graph (con+nue)
Section 10 in the textbook

1

Graph terminologies (Recap)
1. Graph types
• Simple graph
• Multigraph
• Pseudo graph
• Directed graphs (Simple directed graph, Directed 

Multigraph)
• Mixgraph

2. Special graphs
• Complete graph
• Cyles (𝐶!)
• Wheels (𝑊!)
• n-Cubes (𝑄!)
• Bipartite graphs(𝐾",!), Complete Bipartite 

graphs

3. Adjacent/Neighbor/Incidents 
4. Degree of vertex/In-degree Vs. Out-degree
5. Handshaking theorem

%
$∈&

deg(𝑣) = 2 ⋅ |𝐸|

6. Graph representations
• Adjacency matrices
• Incidence matrices

7. Isomorphism of graphs
• Same invariants (vertices/edges/degrees of 

vertices)
8. Connectivity
• Simple Path, Simple Circuit
• Connected/Connectedness Graphs
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Euler Paths and Circuits
The town of Ko n̈igsberg, Prussia (now called 
Kaliningrad and part of the Russian republic), was 
divided into four sec?ons by the branches of the 
Pregel River. These four sec?ons included the two 
regions on the banks of the Pregel, Kneiphof Island, 
and the region between the two branches of the 
Pregel. In the eighteenth century seven bridges 
connected these regions. 
The townspeople took long walks through town on 
Sundays. They wondered whether it was possible to 
start at some loca?on in the town, travel across all 
the bridges once without crossing any bridge twice, 
and return to the star?ng point. 

Applied Discrete Mathematics @ Class #9: Graph problems3

The seven bridges of Ko n̈igsberg. 

MulXgraph model of Ko n̈igsberg

3

Euler Paths and Circuits

Definition: An Euler circuit in a graph G is a simple circuit containing 
every edge of G. An Euler path in G is a simple path containing every 
edge of G. 

Applied Discrete Mathematics @ Class #9: Graph problems4

An Euler circuit is:
1-8-3-6-8-7-2-4-5-6-2-3-1
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Euler Paths and Circuits
Theorem: A connected multigraph with at least two vertices has an Euler 
circuit if and only if each of its vertices has even degree. 
Proof: 
(A) If there’s an Euler circuit, then every vertex has even degree
- Suppose the Euler Circuit begin with a vertex 𝑎, and continue with an edge 
incident with 𝑎, say {𝑎, 𝑏}. The edge {𝑎, 𝑏} contribute 1 to deg(𝑎)
- Each time the circuit passes through a vertex, it contributes two to the 
vertex’s degree. (one when entering, and one when leaving)
- Finally, the circuit terminates where it started, contributes on to deg(𝑎)
- Therefore, deg(𝑎)must be even. A vertex other than 𝑎 has even degree.

Applied Discrete Mathematics @ Class #9: Graph problems5
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Euler Paths and Circuits
(B) If every vertex has even degree, there is an Euler circuit.
- We will form a simple circuit that begins at an arbitrary vertex 𝑎 of G, building it edge by edge. 
- Let 𝑥' = 𝑎. First, we arbitrarily choose an edge {𝑥', 𝑥(} incident with 𝑎 which is possible 

because G is connected. 
- We continue by building a simple path 𝑥', 𝑥( , 𝑥(, 𝑥) , … , {𝑥!*(, 𝑥!}, successively adding 

edges one by one to the path until we cannot add another edge to the path.
- The path we have constructed must terminate because the graph has a finite number of edges, 

so we are guaranteed to eventually reach a vertex for which no edges are available to add to 
the path. 

- The path begins at 𝑎 with an edge of the form {𝑎, 𝑥}, it must terminate at 𝑎 with an edge of the 
form {𝑦, 𝑎} because, every time we enter and leave a vertex of even degree, there are an even 
number of edges incident with this vertex that we have not yet used in our path. 

Applied Discrete Mathema9cs @ Class #9: Graph problems6
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Euler Paths and Circuits
- An Euler circuit has been constructed if all the edges have been used. Otherwise, 

consider the subgraph H obtained from G by deleting the edges already used and 
vertices that are not incident with any remaining edges. 

- G is connected, H has at least one vertex 𝑤 in common with the circuit that has been 
deleted.

- Every vertex in H has even degree because in G all vertices had even degree, and for 
each vertex, pairs of edges incident with this vertex have been deleted to form H.

- Beginning at 𝑤, construct a simple path in H by choosing edges as long as possible, as 
was done in G. This path must terminate at 𝑤. 

- Next, form a circuit in G by splicing the circuit in H with the original circuit in G (this can 
be done because 𝑤 is one of the vertices in this circuit).  Continue this process until all 
edges have been used. This produces an Euler circuit. 
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Euler Paths and Circuits
From (A) and (B) the theorem is proven.

Procedure Euler(G: connected with all vertices of even degree)
circuit := a circuit in G beginning at arbitrary vertex.
H := G with the edges of this circuit removed

While H has edges
subcircuit := a circuit in H beginning at a nonisolated vertex 
H:=H with edges of subcircuit and all isolated vertices removed
circuit := circuit with subcircuit inserted appropriate vertex

Return circuit {circuit is an Euler circuit}

Applied Discrete Mathema9cs @ Class #9: Graph problems8
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Euler path, Euler circuit

Applied Discrete Mathematics @ Class #9: Graph problems9

Circuit: = 1-2-4-3-1

G

Subcircuit := 2-5-8-2

Circuit := 1-2-5-8-2-4-3-1

H

9

Euler path, Euler circuit

Applied Discrete Mathematics @ Class #9: Graph problems10

Circuit: 1-2-5-8-2-4-6-7-4-9-6-10-4-3-1

H

Subcircuit: 4-6-7-4-9-6-10-4

Circuit: 1-2-5-8-2-4-3-1

H

Subcircuit: 7-11-9-7

Circuit: 1-2-5-8-2-4-6-7-11-9-4-9-6-10-4-3-1

10
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Euler path, Euler circuit

Is there Euler circuit in the town of Ko n̈igsberg?

Answer: No!

Applied Discrete Mathematics @ Class #9: Graph problems11

The seven bridges of Ko n̈igsberg. MulXgraph model of Ko n̈igsberg
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Euler path, Euler circuit
Which of following graphs have and Euler circuit?

Answer:
• G1 has an Euler circuit a-b-e-d-c-e-a
• G2 contains vertices of odd degree. It doesn’t have Euler circuit
• G3 contains vertices of odd degree. It doesn’t have Euler circuit

Applied Discrete Mathema9cs @ Class #9: Graph problems12
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Euler path, Euler circuit
How about directed graph? ∑$∈&deg 𝑣 = ∑$∈&deg* 𝑣 + ∑$∈&deg+ 𝑣
Directed graphs have an Euler circuit if saXsfy following condiXon

• All verXces with nonzero degree belong to a single strong connected component
• In-degree is equal to out-degree for every vertex

H1 Doesn’t have Euler Circuit 
H2 has Euler circuit a-g-c-b-g-e-d-f-a
H3 Has Euler path c-a-b-c-d-b.

Applied Discrete Mathematics @ Class #9: Graph problems13
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Hamilton Path and Circuits
Definition

• A simple path in a graph G that passes through every vertex exaclty once is call Hamilton path.
• A simple circuit in a graph G that passes through every vertex exactly once is call Hamilton 

circuit.

Applied Discrete Mathema9cs @ Class #9: Graph problems14

Hamilton circuit: 1-2-3-4-4-6-7-8-9-10-1
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Hamilton Path and Circuits

Dirac’s Theorem:  If G is a simple graph with n verGces with n ≥ 2 such 
that the degree of every vertex in G is at least n/2, then G has a 
Hamilton circuit

Ore‘s Theorem: If G is a simple graph with n verGces with n ≥ 3 such 
that deg(u) + deg(v) ≥ n for every pair of nonadjacent verGces u and v in 
G, then G has a Hamilton circuit. 

Applied Discrete Mathema9cs @ Class #9: Graph problems15

15

Shortest-Path Problems
Definition: Graph G that have a number assigned to each edge are 
called weighted graphs.  The length of a path in a weighted graph is 
the sum of the weights of the edges of this path. 

Given a weighted directed graph, one common problem is finding the 
shortest path between two given vertices.

Applied Discrete Mathematics @ Class #9: Graph problems16
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Shortest Path

Given the graph below, suppose we wish to find the shortest path from 
vertex 1 to vertex 13

Applied Discrete Mathema9cs @ Class #9: Graph problems17
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Shortest Path

ATer some consideraGon, we may determine that the shortest path is 
as follows, with length 14

Other paths exists, but they are longer

Applied Discrete Mathematics @ Class #9: Graph problems18
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Nega+ve Cycles

Clearly, if we have negative vertices, it may be possible to end up in a 
cycle whereby each pass through the cycle decreases the total length

Thus, a shortest length would be undefined for such a graph

Consider the shortest path from vertex 1 to 4...

We will only consider non-negative weights.

Applied Discrete Mathematics @ Class #9: Graph problems19
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Shortest Path Example
Given:

• Weighted Directed graph G = (V, E).
• Source s, destination t.

Find shortest directed path from 𝑠 to 𝑡.

Cost of path s-2-3-5-t
=  9 + 23 + 2 + 16
= 48.

s

3

t

2

6

7

4
5

23

18
2

9

14

15 5

30

20

44

16

11

6

19

6
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Discussion Items
How many possible paths are there from 𝑠 to 𝑡?

Can we safely ignore cycles? If so, how?

Any suggesLons on how to reduce the set of possibiliLes?

Can we determine a lower bound on the complexity like we did for comparison sorLng?

s

3

t

2

6

7

4
5

23

18
2

9

14

15 5

30

20

44

16

11

6

19

6
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Key Observa+on
A key observaGon is that if the shortest path contains the node 𝑣, then:
• It will only contain 𝑣 once, as any cycles will only add to the length.
• The path from 𝑠 to 𝑣 must be the shortest path to 𝑣 from 𝑠.
• The path from 𝑣 to 𝑡 must be the shortest path to 𝑡 from 𝑣.

Thus, if we can determine the shortest path to all other verGces that 
are incident to the target vertex we can easily compute the shortest 
path.
• Implies a set of sub-problems on the graph with the target vertex 

removed.

Applied Discrete Mathema9cs @ Class #9: Graph problems22
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Dijkstra’s Algorithm

Works when all of the weights are positive.

Provides the shortest paths from a source to all other vertices in the 
graph.
• Can be terminated early once the shortest path to t is found if 

desired.

Applied Discrete Mathema9cs @ Class #9: Graph problems23
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Shortest Path

Consider the following graph with posiGve weights and cycles.

Applied Discrete Mathematics @ Class #9: Graph problems24
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Dijkstra’s Algorithm
A first a9empt at solving this problem might require an array of Boolean values, all 
iniFally false, that indicate whether we have found a path from the source.

1 F
2 F
3 F
4 F
5 F
6 F
7 F
8 F
9 F

Applied Discrete Mathema9cs @ Class #9: Graph problems25
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Dijkstra’s Algorithm

Graphically, we will denote this with check boxes next to each of the 
vertices (initially unchecked)

Applied Discrete Mathema9cs @ Class #9: Graph problems26
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Dijkstra’s Algorithm

We will work bo[om up.
• Note that if the starGng vertex has any adjacent edges, then there 

will be one vertex that is the shortest distance from the starGng 
vertex. This is the shortest reachable vertex of the graph.

We will then try to extend any exis%ng paths to new verGces.

IniGally, we will start with the path of length 0
• this is the trivial path from vertex 1 to itself

Applied Discrete Mathematics @ Class #9: Graph problems27
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Dijkstra’s Algorithm

If we now extend this path, we should consider the paths
•(1, 2) length 4
•(1, 4) length 1
•(1, 5) length 8

The shortest path so far is (1, 4) which is of length 1.

Applied Discrete Mathematics @ Class #9: Graph problems28
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Thus, if we now examine vertex 4, we may deduce that there exist the 
following paths:
•(1, 4, 5) length 12
•(1, 4, 7) length 10
•(1, 4, 8) length 9

Dijkstra’s Algorithm

Applied Discrete Mathema9cs @ Class #9: Graph problems29
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Dijkstra’s Algorithm

We need to remember that the length of that path from node 1 to 
node 4 is 1

Thus, we need to store the length of a path that goes through node 4:
• 5 of length 12
• 7 of length 10
• 8 of length 9

Applied Discrete Mathema9cs @ Class #9: Graph problems30
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Dijkstra’s Algorithm

We have already discovered that there is a path of length 8 to vertex 5 
with the path (1, 5).

Thus, we can safely ignore this longer path.

Applied Discrete Mathematics @ Class #9: Graph problems31
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Dijkstra’s Algorithm
We now know that: 

•There exist paths from vertex 1 to 
verFces {2,4,5,7,8}.

•We know that the shortest path from 
vertex 1 to vertex 4 is of length 1.

•We know that the shortest path to the 
other verFces {2,5,7,8} is at most the 
length listed in the table to the right.

Vertex Length
1 0
2 4
4 1
5 8
7 10
8 9

Applied Discrete Mathematics @ Class #9: Graph problems32
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Dijkstra’s Algorithm
There cannot exist a shorter path to either of the verFces 1 or 4, since the distances 
can only increase at each iteraFon.

We consider these verFces to be  visited Vertex Length
1 0
2 4
4 1
5 8
7 10
8 9

If you only knew this information and nothing 
else about the graph, what is the possible 

lengths from vertex 1 to vertex 2? What about 
to vertex 7?

Applied Discrete Mathema9cs @ Class #9: Graph problems33
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Relaxation

Maintaining this shortest discovered distance d[v] is called relaxation:
Relax(u,v,w) {

if (d[v] > d[u]+w) then

d[v]=d[u]+w;

}

95
2

75
2

Relax

65
2

65
2

Relaxu v u v

Applied Discrete Mathema9cs @ Class #9: Graph problems34

d[u] = 8 

d[v]

d[u] = 8 

d[v] = d[u] + 2

34
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Dijkstra’s Algorithm

In Dijkstra’s algorithm, we always take the next unvisited vertex which 
has the current shortest path from the starting vertex in the table.

This is vertex 2 

Applied Discrete Mathema9cs @ Class #9: Graph problems35

Vertex Length
1 0
2 4
4 1
5 8
7 10
8 9

35

Dijkstra’s Algorithm

We can try to update the shortest paths to vertices 3 and 6 (both of 
length 5) however:
• there already exists a path of length 8 < 10 to vertex 5 (10 = 4 + 6)
• we already know the shortest path to 4 is 1

Applied Discrete Mathematics @ Class #9: Graph problems36
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Dijkstra’s Algorithm
To keep track of those vertices to which no path has reached, we can assign those 
vertices an initial distance of either

• infinity (∞ ),
• a number larger than any possible path, or
• a negative number

For demonstration purposes, we will use ∞

As well as finding the length of the shortest path, we’d like to find the 
corresponding shortest path
Each time we update the shortest distance to a particular vertex, we will keep track 
of the predecessor used to reach this vertex on the shortest path.

Applied Discrete Mathematics @ Class #9: Graph problems37

37

Dijkstra’s Algorithm
We will store a table of pointers, each 
initially 0. This table will be updated each 
time a distance is updated
Graphically, we will display the reference to 
the preceding vertex by a red arrow
• if the distance to a vertex is ∞, there will 

be no preceding vertex
• otherwise, there will be exactly one 

preceding vertex

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

Applied Discrete Mathematics @ Class #9: Graph problems38
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Dijkstra’s Algorithm

Thus, for our initialization:
• we set the current distance to the initial vertex as 0
• for all other vertices, we set the current distance to ∞
• all vertices are initially marked as unvisited
• set the previous pointer for all vertices to null

Applied Discrete Mathematics @ Class #9: Graph problems39
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Dijkstra’s Algorithm

Thus, we iterate:
• find an unvisited vertex which has the shortest distance to it
•mark it as visited
• for each unvisited vertex which is adjacent to the current vertex:

• add the distance to the current vertex to the weight of the connecting edge
• if this is less than the current distance to that vertex, update the distance and 

set the parent vertex of the adjacent vertex to be the current vertex

Applied Discrete Mathematics @ Class #9: Graph problems40

40



8/15/22

21

Dijkstra’s Algorithm

Halting condition:
• we successfully halt when the vertex we are visiting is the target 

vertex
• if at some point, all remaining unvisited vertices have distance ∞, 

then no path from the starting vertex to the end vertex exits

Note:  We do not halt just because we have updated the distance to 
the end vertex, we have to visit the target vertex.

Applied Discrete Mathematics @ Class #9: Graph problems41

41

Example

Consider the graph:
• the distances are appropriately initialized
• all vertices are marked as being unvisited

Applied Discrete Mathematics @ Class #9: Graph problems42
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Example

Visit vertex 1 and update its neighbours, marking it as visited
• the shortest paths to 2, 4, and 5 are updated

Applied Discrete Mathematics @ Class #9: Graph problems43
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Example

The next vertex we visit is vertex 4
• vertex 5 1 + 11 ≥ 8 don’t update
• vertex 7 1 +   9 < ∞ update
• vertex 8 1 +   8 < ∞ update

Applied Discrete Mathematics @ Class #9: Graph problems44
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Example

Next, visit vertex 2
• vertex 3 4 + 1 < ∞ update
• vertex 4 already visited

• vertex 5 4 + 6 ≥ 8 don’t update

• vertex 6 4 + 1 < ∞ update

Applied Discrete Mathematics @ Class #9: Graph problems45
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Example

Next, we have a choice of either 3 or 6

We will choose to visit 3
•vertex 5 5 + 2 < 8 update

•vertex 6 5 + 5 ≥ 5 don’t update

Applied Discrete Mathematics @ Class #9: Graph problems46
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Example

We then visit 6
•vertex 8 5 + 7 ≥ 9 don’t update
•vertex 9 5 + 8 < ∞ update

Applied Discrete Mathematics @ Class #9: Graph problems47
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Example

Next, we finally visit vertex 5:
•vertices 4 and 6 have already been visited
•vertex 7 7 + 1 < 10 update
•vertex 8 7 + 1 <   9 update

•vertex 9 7 + 8 ≥ 13 don’t update

Applied Discrete Mathematics @ Class #9: Graph problems48
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Example

Given a choice between vertices 7 and 8, we choose vertex 7
•vertices 5 has already been visited
•vertex 8 8 + 2 ≥ 8 don’t update

Applied Discrete Mathematics @ Class #9: Graph problems49
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Example

Next, we visit vertex 8:
•vertex 9 8 + 3 < 13 update

Applied Discrete Mathematics @ Class #9: Graph problems50
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Example

Finally, we visit the end vertex

Therefore, the shortest path from 1 to 9 has length 11

Applied Discrete Mathematics @ Class #9: Graph problems51
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Example

We can find the shortest path by working back from the final vertex:
•9, 8, 5, 3, 2, 1

Thus, the shortest path is (1, 2, 3, 5, 8, 9)

Applied Discrete Mathematics @ Class #9: Graph problems52
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Example

In the example, we visited all vertices in the graph before we finished

This is not always the case, consider the next example

Applied Discrete Mathematics @ Class #9: Graph problems53
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Example

Find the shortest path from 1 to 4:
• the shortest path is found after only three vertices are visited
• we terminated the algorithm as soon as we reached vertex 4
• we only have useful information about 1, 3, 4

• we don’t have the shortest path to vertex 2

Applied Discrete Mathematics @ Class #9: Graph problems54
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Dijkstra’s algorithm
d[s] ¬ 0
for each v Î V – {s}

do d[v] ¬¥
S ¬Æ
Q ¬ V ⊳ Q is a priority queue maintaining V – S
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
S ¬ S È {u}
for each v Î Adj[u] do

if d[v] > d[u] + w(u, v) then 
d[v] ¬ d[u] + w(u, v)
p[v] ¬ u

Applied Discrete Mathematics @ Class #9: Graph problems55
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Dijkstra’s algorithm
d[s] ¬ 0
for each v Î V – {s}

do d[v] ¬¥
S ¬Æ
Q ¬ V ⊳ Q is a priority queue maintaining V – S
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
S ¬ S È {u}
for each v Î Adj[u] do

if d[v] > d[u] + w(u, v) then 
d[v] ¬ d[u] + w(u, v)
p[v] ¬ u

Applied Discrete Mathematics @ Class #9: Graph problems56

relaxation step

Implicit DECREASE-KEY
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Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 98

2

2

Graph with nonnegative edge weights:

Applied Discrete Mathematics @ Class #9: Graph problems57
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Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 98

2

2

Initialize

Applied Discrete Mathematics @ Class #9: Graph problems58

A B C D EQ:

0, A ¥, - ¥, - ¥, - ¥, -

d(A), P(A) d(B), P(B) d(C), P(C) d(D), P(D) d(E), P(E)

S: {} 0

¥

¥ ¥

¥

58
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Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2
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A B C D EQ:

0, A ¥, - ¥, - ¥, - ¥, -

d(A), P(A) d(B), P(B) d(C), P(C) d(D), P(D) d(E), P(E)

S: {A}
“A”¬ EXTRACT-MIN(Q):

0

¥

¥ ¥

¥

59

Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2
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A B C D EQ:

¥, - ¥, - ¥, - ¥, -

d(A), P(A) d(B), P(B) d(C), P(C) d(D), P(D) d(E), P(E)

S: {A}

Relax all edges leaving A:

0

10

3 ¥

¥

0, A
10, A 3, A ¥, - ¥, -

60
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Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2
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A B C D EQ:

0 ¥, - ¥, - ¥, - ¥, -

d(A), P(A) d(B), P(B) d(C), P(C) d(D), P(D) d(E), P(E)

S: {A, C}

“C”¬ EXTRACT-MIN(Q):

10

3 ¥

¥

10, A 3, A ¥, - ¥, -

61

Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2
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A B C D EQ:

0

d(A), P(A) d(B), P(B) d(C), P(C) d(D), P(D) d(E), P(E)

S: {A, C}

Relax all edges leaving C:

7

3 5

11

7, C 11, C 5, C

¥, - ¥, - ¥, - ¥, -

10, A 3, A ¥, - ¥, -

62
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Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2
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A B C D EQ:

0

d(A), P(A) d(B), P(B) d(C), P(C) d(D), P(D) d(E), P(E)

S: {A, C, E}

“E”¬ EXTRACT-MIN(Q):

7

3 5

11

¥, - ¥, - ¥, - ¥, -

10, A 3, A ¥, - ¥, -

7, C 11, C 5, C

63

Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2
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A B C D EQ:

0

d(A), P(A) d(B), P(B) d(C), P(C) d(D), P(D) d(E), P(E)

S: {A, C, E}

Relax all edges leaving E:

7

3 5

11

¥, - ¥, - ¥, - ¥, -

10, A 3, A ¥, - ¥, -

7, C 11, C 5, C

7, C 11, C

64
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Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2
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A B C D EQ:

0

d(A), P(A) d(B), P(B) d(C), P(C) d(D), P(D) d(E), P(E)

S: {A, C, E, B}

“B”¬ EXTRACT-MIN(Q):

7

3 5

11

¥, - ¥, - ¥, - ¥, -

10, A 3, A ¥, - ¥, -

7, C 11, C 5, C

7, C 11, C

65

Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2
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A B C D EQ:

0

d(A), P(A) d(B), P(B) d(C), P(C) d(D), P(D) d(E), P(E)

S: {A, C, E, B}

Relax all edges leaving B:

7

3 5

9

¥, - ¥, - ¥, - ¥, -

10, A 3, A ¥, - ¥, -

11, C 5, C

7, C 11, C
7, C

9, B
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Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2
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A B C D EQ:

0

d(A), P(A) d(B), P(B) d(C), P(C) d(D), P(D) d(E), P(E)

S: {A, C, E, B, D}

“D”¬ EXTRACT-MIN(Q):

7

3 5

9

¥, - ¥, - ¥, - ¥, -

10, A 3, A ¥, - ¥, -

11, C 5, C

7, C 11, C
7, C

9, B

67

Example of Dijkstra’s algorithm

A

B D

C E

10

3

1 4 7 9
8

2

2
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A B C D E

From A

0

d(A), P(A) d(B), P(B) d(C), P(C) d(D), P(D) d(E), P(E)

7

3 5

9

¥, - ¥, - ¥, - ¥, -

10, A 3, A ¥, - ¥, -

11, C 5, C

7, C 11, C
7, C

9, B Destination Length Path

B 7 A-C-B
C 3 A-C
D 9 A-C-B-D
E 5 A-C-E

68
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Summary

Given a weighted directed graph, we can find the shortest distance 
between two vertices by:
• starting with a trivial path containing the initial vertex
• growing this path by always going to the next vertex which has the 

shortest current path
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In-class exercise

The weighted graphs shows the distances between cities in New Jersey. 
Find a shortest route in distance between Newark and Camden, and 
between Newark and Cape May
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Solution

Applied Discrete Mathematics @ Class #9: Graph problems71

71


