

1

- Conditional Probability

Exam structure

Question 1: (15 points)

- True/False or Yes/No

Question 2: (15 points)

- Probability problems

Question 3: (15 points)

- Tree Quizzes

Question 4: (15 points)

- Recurrence Relation

Question 5: (10 points)

- Induction proof

Question 6: (10 points)

- Graph quizzes

Question 7: (10 points)

- Easy \& Simple computation

Question 8: (10 points)

- Counting quizzes

Final Exam policy

Camera on! Webcams will be used for proctoring
\square Showing Student ID at the start of the exam.
\square Please login 15 minutes early (9:45am)
\square Private message in the chat box
\square Exactly 10 minutes to submit the solution (GradeScope)
\square No internet resources; No collaborations; Opened book
\square Submissions

- Handwriting \rightarrow JPG/JPEG images
- MS Word/Latex editor \rightarrow PDF file
- Ordered pages (Don’t combine/crop)

Applied Discrete Mathematics (CS220)

Review and practice

4

Contents

\square Logic
Boolean Algebra, Logic circuit

- Set theory
\square Relations
\square Recurrence relations
Complexity of Algorithms

Induction
\square Integer properties
\square Counting
\square Discrete Probability
\square Graph \& Tree
-
5

Propositional Logic

- Propositions and Logical operator

$$
\neg, \wedge, \vee, \bigoplus, \rightarrow, \leftrightarrow
$$

- Propositional Formula and Its classification
- Contingence
- Tautology
- Contradiction

Propositional Logic

$>$ How to determine whether a compound proposition is a tautology/contradiction/contingence?

- Using truth table
- Using logical equivalence rules
> Propositional equivalent?
- Some important equivalences
$>$ Valid of Argument
- Some important equivalences
- Rules of Inference

Propositional Logic

Predicates and Quantifiers

- Universal quantifier \forall
- Existential quantifier \exists
> Logical Equivalence
- De Morgan's laws for predicates
- Quantifiers

$$
\begin{aligned}
& \forall x(P(x) \wedge Q(x)) \equiv \forall x P(x) \wedge \forall x Q(x) \\
& \exists x(P(x) \vee Q(x)) \equiv \exists x P(x) \vee \exists x Q(x)
\end{aligned}
$$

Boolean Algegra

- Boolean operators
- Boolean complement
- Boolean sum
- Boolean product
\square Boolean functions and expressions
- Minterm method to determine Boolean expression
- Karnaugh Map (K-Map) metho to find equivalent minimal boolean expression
- Circuit gates

9

Set Theory

Set and Set operators

- Set operators: $\cap, \cup,-$
\square Subset (\subseteq), proper subsets (\subset)
\square Power set (2^{s})
\square Set partitions
\square Cardinality of set
- Principle of inclusion-Exclusion

10

Relations

\square Relations and their representing

- $R \subseteq A \times B$
- Representing methods: Set, Matrix, Graph
\square Properties of relations
- Reflexive, Symmetric, Transitive, Asymmetric
\square Combining relation
- Composite
- Inverse

Relations

[Closures of relations

- Reflexive closure
- Symmetric closure
- Transitive closure
[Equivalence relation
- Equivalence relation: reflexive, symmetric, and transitive
\square Partial ordering and Poset
- Reflexive, Transitive, Antisymmetric
- Hasse Diagram

Functions

Terminologies

- Domain, Codomain, Image, Preimage, Range
- Properties of functions
- Injective (one-to-one)
- Surjective (onto)
- Bijective

Composition and Inversion

13

Recurrence Relations

\square Recurrence relations
Solving recurrence relations

- First form: $a_{n}=k \cdot a_{n-1} ; a_{0}=C$

$$
a_{n}=C \cdot k^{n}
$$

- Second form: $a_{n}=a_{n-1}+k ; a_{0}=C$

$$
a_{n}=C+\sum_{i=1}^{n} k
$$

Linear homogenous recurrence relation

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}
$$

1. Determine characteristic equation
2. Find the roots of characteristic equation
$>$ Case 1: Those roots are different $r_{1}, r_{2}, \ldots, r_{k}$.

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}+\cdots+\alpha_{k} r_{k}^{n}
$$

$>$ Case 2: Identical roots $\frac{\text { troots }}{r_{1} r_{1} \ldots r_{1}} \stackrel{\text { sroots }}{r_{2}, r_{2} \ldots r_{2}}$, where $t+s=k$
$a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} n r_{1}^{n}+\cdots+\alpha_{t} n^{t-1} r_{1}^{n}+\beta_{1} r_{2}^{n}+\beta_{2} n r_{2}^{n}+\cdots+\beta_{s} n^{s-1} r_{2}^{n}$
3. Find α_{i} based on initial values

Algorithm and Complexity

\square Pseudo code
\square Complexity of Algorithm and Big-O

- Common Big-O
\square Rules for Big-O

Induction and Recursive algorithm

\square Mathematical induction
\square Strong induction (second principle of mathematical induction)
\square Recursive algorithms

Integer property

\square Divisibility theorems
\square Primes and Prime factorization

- Find gcd, Icm using prime factorization
- Relatively prime integers
\square Modular arithmetic and Congruence
- Euclidean algorithm to find gcd
\square Integer representations
- Binary expansion, Hexadecimal expansion, Octal expansion

Counting

\square Basic principle

- The sum rule, the product rule
- The subtraction rule (inclusion-exclusion), the division rule
- Using tree diagram

Pigeonhole Principle
\square Permutations and Combinations

19

Discrete Probability

Definition probability
Complement events
Inclusion-Exclusion in Discrete probability
\square Conditional probability
\square Independence events
Random variables and Expected values

Graph

Types of graphs
\square Terminologies

- Sub-graph
- Degree of vertices
- Isomorphic graphs
- Path, circuit/cycle

Special graphs

- $K_{n}, K_{n, m}, C_{n}, W_{n}, Q_{n}$

21

Graph

Euler path \& Euler circuit

- Algorithm finding Euler circuit
\square Hamilton path \& Hamilton circuit
\square Shortest path
- Dijkstra algorithm

22

Tree

\square Terminologies

- Tree, Forest
- Leaf, internal vertices
- Height of tree

Tree traversal
\square Minimal spanning tree

- Prim's algorithm
- Kruskal algorithm

Final Exam policy

Camera on! Webcams will be used for proctoring
\square Showing Student ID at the start of the exam.
\square Please login 15 minutes early (9:45am)
\square Private message in the chatbox
Exactly 10 minutes to submit the solution (Gradescope)
\square Submissions

- Handwriting \rightarrow JPG/JPEG images
- MS Word/Latex editor \rightarrow PDF file
- Ordered pages (Don't combine/crop)

Exam structure

Question 1: (15 points)

- True/False or Yes/No questions

Question 2: (15 points)

- Probability problems

Question 3: (15 points)

- Tree Quizzes

Question 4: (15 points)

- Recurrence Relation

Question 5: (10 points)

Question 6: (10 points)

- Graph quizzes

Question 7: (10 points)

- Easy \& Simple computation

Question 8: (10 points)

- Counting quizzes
- Conditional Probability
- Induction proof

Practice

True or false (why?)

a) $f(x)=2 x+1, g(x)=x^{2}+4$ then $f \circ g(2)=29$
b) $\forall x(P(x) \vee Q(x)) \equiv(\forall x P(x)) \vee(\forall x Q(x))$
c) If $a \equiv 11(\bmod 19), b \equiv 3(\bmod 19), c \equiv 7 a+3 b(\bmod 19)$ then $c=10$
d) If G is a simple graph with 50 vertices, the maximum edges 1225
e) If T is a binary tree with 41 vertices, its minimum height is 5
f) If T is a full binary tree with 111 vertices, its maximum height is 50 .
g) Every full binary tree with 51 vertices has 26 leaves.
h) Every full binary tree with 60 leaves has 120 vertices.
i) Every full binary tree with 75 vertices has 37 internal vertices
j) A full 3-ary tree with 100 internal vertices has 300 vertices.

Practice

Cardinality

How many distinct elements does the set S contain in each case?
a) $S=\{7,2,3\} \cup\{3,1,2\}$
b) $S=\{(x, y),(y, z),(z, z)\} \cap\{(y, x),(z, z),(y, y)\}$
c) $S=\{A \mid(A \subseteq\{1,2,3,4\}) \wedge(|A|=5)\}$
d) $S=\{x \mid x 2+2 x=8 ; x$ is a real number $\}$
e) $S=\{(a, b) \mid a<b ; a, b \in\{1,2,3\}\}$
f) $S=E$, where $G=(V, E)$ is a tree and $|V|=5$
g) $S=\{G \mid G$ is a simple graph with 4 vertices $\}$
h) $S=\{R \mid R$ is a reflexive relation on $\{0,1\}\}$
i) $S=\{n \mid(n$ is prime $) \wedge(n \bmod 2=0)\}$
j) $S=\{a, b, c, e\}-\{b, c, d\}$

Practice

Recurrence relations practice

Somewhere in the forests, scientists discovered two rare species of animals named \mathbf{V} and the \mathbf{S}. On their first encounter with these animals, the scientists found five animals of each species. One year later, the scientists returned and then found five \mathbf{V} and $13 \mathbf{S}$. The scientists somehow devised formulas for the populations vn and $s n$, denoting the number of \mathbf{V} and \mathbf{S}, respectively, in year n, for $n \geq 2: \quad v n=n \cdot v n-1 s n=4 s n-1+5 s n-2$
a) Let us define that the species were discovered in year 0 , and the second counting was done in year 1 . Use the above formulas to predict the populations $v n$ and $s n$ in the years $n=2,3,4$, and 5 .
b) Find explicit formulas for $v n$ and $s n, n \geq 2$, that do not require iteration. Check the correctness of your formulas using some of the results obtained in a).
c) Describe the growth of $v n$ and $s n$ using the big-O notation for each of them. In each estimate $O(f(n))$, $f(n)$ should be the most suitable function chosen from the following ones: $\log n, n, n \log n, n 2, n 3,2 n, 3 n$, $4 n, 5 n, 6 n, n!, n n$.
d) In the year 2050, will there be more V than S, given that the populations develop as predicted? Or will there be more S than V? Do not try to compute the actual numbers! Just tell which species you think will have the larger population, and give the reason why you think so.

Practice

Probability Practices

a) There is an urn containing four blue balls and four red balls. We randomly draw four balls from this urn without returning any balls. What is the probability that all of the four balls that we drew are blue?
b) There are two urns, each of them containing two blue balls and two red balls. We randomly draw two balls from the first urn and then randomly draw two balls from the second urn, without returning any balls. What is the probability that all of the four balls that we drew are blue?
c) There are four urns, each of them containing one blue ball and one red ball. We randomly draw one ball from each urn without returning any balls. What is the probability that all of the four balls that we drew are blue?

