8/1012022: Probability Practicing

1) Event space: All the possibility can happen S
2) Countrig tech. Nurser of Event E happh EI

$$
\left.P(E)=\frac{|E|}{|S|} \quad 0 \leq P E\right) \leq 1
$$

3) If there are some different events $e_{1}, e_{2} \ldots e_{n}$ can happen in S

$$
\begin{aligned}
& p\left(e_{1}\right)+p\left(e_{2}\right)+\cdots+p\left(e_{n}\right)=1 \\
& \text { 4) } \quad \begin{array}{l}
E_{1}, E_{2} \Rightarrow p\left(E_{1} \cup E_{2}\right)
\end{array}=p\left(E_{1}\right)+p\left(E_{2}\right) \\
&-p\left(E_{1} \cap E_{2}\right)
\end{aligned}
$$

1. What is the probability that a card selected at random from a standard deck of 52 cards is an ace?
$|S|=52$
res hume 4 Aces $|E|=4 \quad P(E)=\frac{(E)}{|5|}=\frac{4}{52}$
2. What is the probability that a fair die comes up six when it is rolled?

$$
P(E)=\frac{1}{13} \simeq 7.65 \%
$$

$$
\begin{aligned}
& |S|=6 \\
& |E|=1
\end{aligned} \quad \Rightarrow \quad P(E)=\frac{1}{6}=0.166 \mathrm{~F} .
$$

3. What is the probability that a randomly selected integer chosen from the first 100 positive integers is odd?

$$
\left.\begin{array}{l}
(S)=100 \\
(E)=50
\end{array}\right\} \quad P(E)=\frac{50}{105}=\frac{1}{2}=0.5
$$

4. What is the probability that a randomly selected day of a leap year (with 366 possible days) is in April?

$$
\begin{aligned}
& |S|=366 \\
& |E|=30
\end{aligned} \quad p(E)=\frac{30}{366}=5 / 61 \simeq 0.082 .
$$

5. What is the probability that the sum of the numbers on two dice is even when they are rolled?

$$
\begin{aligned}
& D_{1} \underline{D}_{2}=\{(1,1),(1,2), \ldots,(1,6),(2,1), \ldots(-2,6)\} \\
& |S|=6 \times 6=36
\end{aligned}
$$

$|E|=18$ both of tho values are even/ odd

$$
\Rightarrow \quad P(E)=\frac{|E|}{|8|}=\frac{18}{36}=0.5
$$

6. What is the probability that a card selected at random from a standard deck of 52 cards is an ace or a heart?

$$
|s|=52
$$

$$
\begin{aligned}
& 4 \text { Aces } \\
& 52 / 4 \text { units }=13 \text { hearts } \\
& 4 \Rightarrow A c k \\
& \text { (13) Contains } 1 \text { case } \\
& \text { the Ace ghearA } \\
& \left(E_{1}\right)=4 \Rightarrow p\left(E_{1}\right)=\frac{4}{52} \\
& \left|E_{2}\right|=13 \rightarrow p\left(E_{2}\right)=\frac{13}{52} \\
& P\left(E_{1} \cap E_{2}\right)=\frac{1}{52} \\
& P(E)=P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right) \\
& =16 / 52=4 / 13
\end{aligned}
$$

7. What is the probability that when a coin is flipped six times in a row, it lands heads up every time?

$$
\begin{aligned}
& |S|=\frac{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}{\| H H H H H H}=2^{6}=64 \\
& |E|=1 \quad \Rightarrow \quad P(E)=\frac{1}{64} \approx 1.56 \%
\end{aligned}
$$

8. What is the probability that a five-card poker hand contains the ace of hearts? pick 5 cards from a duck of 52 cards?

$$
(S 1=C(52,5)
$$

If 1 card is Ace of hent $=1$
The rest φ cards can randomeng choose from 51 cards $\Rightarrow \frac{C(51,4)}{|E|}$
9. What is the probability that a five-card poker hand does not contain the queen of hearts?

$$
\begin{aligned}
& |S|=C(52,5) \\
& |E|=C(51,5) \Rightarrow R E)=\frac{C(51,5)}{C(52,5)}= \\
& \frac{5!1}{46!5!} \div \frac{52!}{47!5!} \Leftrightarrow \frac{54!}{46!5!} \times \frac{4 F+5!}{52!} 52=\frac{47}{52}
\end{aligned}
$$

10. What is the probability that a five-card poker hand contains the two of diamonds and the three of spades?
$S 1=C(52,5)$, Therese 3 cards can be priced from 50 cart

$$
\begin{aligned}
& (E \mid=C(50,3) \\
& P(E)=\frac{C(50,3)}{C(52,5)}=\frac{50!}{4 F 13!} \times \frac{47!5!}{52!}=\frac{20}{51.52}=\frac{5}{51.53}=0.0075 .
\end{aligned}
$$

11. What is the probability that a five-card poker hand con- cains the two of diamonds, the three of spades, the six of hearts, the ten of clubs, and the king of hearts?

$$
\begin{aligned}
& |S|=C(52,5) \\
& |E|=1
\end{aligned} \quad\left[p(E)=\frac{1}{C(52,5)}=1\right.
$$

12. What is the probability that a five-card poker hand contains exactly one ace?
$|8|=C(52,5) \quad$ we tore 4 Aces: $C(4,1)=4$
The rest 4 cards will be parted from 48

$$
\begin{aligned}
C(48,4) \quad|E| & =4 C(48,4) \\
\text { prob }= & \frac{4 C(48,4)}{C(52,5)}=4.48!\frac{45.4705!}{44!} \times \frac{5!}{5 t!}
\end{aligned}
$$

$$
=\frac{4 \cdot 45 \cdot 46 \cdot 47 \cdot 5}{49 \cdot 50 \cdot 51 \cdot 52}=? ? ?
$$

Conditional Probatility
E, F prote of E given F is dijened by

$$
P(E \mid F)=\frac{\mathbb{P}(E \cap F)}{P(*)}
$$

23. What is the conditional probability that exactly four heads appear when a fair coin is flipped five times, given that the first flip came up heads?
$F:$ "first that comes haul"

$$
\left.\begin{array}{rl}
P(F)=\frac{2^{4}}{2^{5}}=\frac{16}{32} \\
& P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{2^{5}}{2}=\frac{4}{2^{5}} \times \frac{2}{1}=\frac{8}{32} \\
P\left(E \cap \frac{1}{4}\right)^{2}
\end{array}\right)=\frac{C(4,3)}{2^{5}}=\frac{8!}{1!3!} \times \frac{1}{2^{5}}=\frac{4}{2^{5}}
$$

24. What is the conditional probability that exactly four heads appear when a fair coin is flipped five times, given that the first flip came up tails?

E

$$
\begin{aligned}
|S| & =2^{5}=32 \\
P(F) & =\frac{1}{2}
\end{aligned}
$$

$\underline{\underline{1}}=|E \cap \underline{E}|$: "4 heads out of 5 times fleppry, first flea BT

$$
\begin{aligned}
P(E \cap F)=\frac{1}{32} \quad \Rightarrow P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{1 / 32}{1 / 2} \\
=1 / 16
\end{aligned}
$$

25. What is the conditional probability that a randomly gen- rated bit string of length four contains at least
two con- secutive 0 s , given that the first bit is a 1 ? (Assume the probabilities of a 0 and a 1 are the same.)
F : "lIst bit is $7^{\prime \prime} \Rightarrow P(F)=\frac{1}{2}$

$$
\begin{aligned}
& E \cap F=\{1000,1001,1100\} \quad 3 \text { comes } \\
& \Rightarrow P(E \cap F)=\frac{3}{24}=\frac{3}{16} \\
& P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{3 / 16}{1 / 2}=\frac{3}{8}
\end{aligned}
$$

$$
\begin{gathered}
P(E \mid F)=\frac{P(E \cap F)}{P(F)} \\
\Rightarrow P(F) P(E \mid F)=P(E \cap F) \\
\text { Graph }- \text { Tree } \\
\text { Thortestop prosth }
\end{gathered}
$$

