
Java Language and SW Dev’t

• Programming Languages

• Java Program Structure

• Problem Solving

• Object-Oriented Programming

• Reading for this class: L&L, 1.4-1.6

Programming Languages

• Computer programmers write programs for
computers using one or more programming
languages

• Some languages are better for one type of
program or one style of user interface than
for others

• You may have heard of some programming
languages: COBOL, Basic, Pascal, C/C++,
Java, Assembly Language, and Others

Programming Languages

• A programming language specifies the words
and symbols that we can use to write a program

• A programming language employs a set of rules
that dictate how the words and symbols can be
put together to form valid program statements

• A programming language has both syntax and
semantics

4

Syntax and Semantics

• The syntax rules of a language define how we
can put together symbols, reserved words, and
identifiers to make a valid program

• The semantics of a program statement define
what that statement means (its purpose or role
in a program)

• A program that is syntactically correct is not
necessarily logically (semantically) correct

• A program will always do what we tell it to do,
not what we meant to tell it to do

5

Language Levels

• There are four programming language levels:
– machine language
– assembly language
– high-level language
– fourth-generation language

• Each type of CPU has its own specific machine
language

• The other levels were created to make it easier
for a human being to read and write programs

6

Programming Languages
• Each type of CPU executes only a particular

machine language

• A program must be translated into machine
language before it can be executed

• A compiler is a software tool which translates
source code into a specific target language

• Often, that target language is the machine
language for a particular type of CPU

• The Java approach is somewhat different

7

Java Translation

• The Java compiler translates Java source code into a
special representation called bytecode in the .class file

• Java bytecode is not the machine language for any
specific CPU

• Another software tool, called an interpreter (in our case
the Java Virtual Machine), executes the bytecode

• Java is considered to be architecture-neutral

• The Java compiler is not tied to any particular machine

• The JVM can be implemented on any machine

Java Program Structure

• In the Java programming language:
– A program is made up of one or more classes
– A class contains zero or more attributes
– A class contains one or more methods
– A method contains program statements

• These terms will be explored in detail throughout
the course

• A Java application starts with a class containing
a method called main

• See Lincoln.java (page 29)

9

Java Program Structure

public class MyProgram

{

}

// comments about the class

class header

class body

Comments can be placed almost anywhere

10

Java Program Structure

public class MyProgram

{

}

// comments about the class

public static void main (String[] args)

{

}

// comments about the method

method headermethod body

// comments about the attributes

attribute definitions

11

Comments
• Comments in a program are called inline

documentation

• They should be included to explain the purpose of the
program and describe processing steps

• They do not affect how a program works

• Java comments can take three forms:

// this comment runs to the end of the line

/* this comment runs to the terminating
symbol, even across line breaks */

/** this is a javadoc comment */

12

Identifiers

• Identifiers are the words a programmer uses in a program

• An identifier can be made up of letters, digits, the underscore
character (_), and the dollar sign

• Identifiers cannot begin with a digit

• Java is case sensitive - Total, total, and TOTAL are
different identifiers

• By convention, programmers use different case styles for different
types of identifiers, such as
– title case for class names - Lincoln

– lower case for object or other variable names – current

– upper case for constants – MAXIMUM

Identifiers

• Sometimes we choose identifiers ourselves
when writing a program (such as Lincoln)

• Sometimes we are using another programmer's
code, so we use the identifiers that he or she
chose (such as println)

• Often we use special identifiers called reserved
words that already have a predefined meaning
in the language

• A reserved word cannot be used in any other
way

14

Reserved Words

• The Java reserved words:
abstract
boolean
break
byte
case
catch
char
class
const
continue
default
do
double

else
enum
extends
false
final
finally
float
for
goto
if
implements
import
instanceof

int
interface
long
native
new
null
package
private
protected
public
return
short
static

strictfp
super
switch
synchronized
this
throw
throws
transient
true
try
void
volatile
while

15

White Space
• Spaces, blank lines, and tabs are called white space

• White space is used to separate words and symbols in
a program. Extra white space is ignored

• A valid Java program can be formatted many ways

• Programs should be formatted to enhance readability,
using consistent indentation

• See Lincoln2.java (page 34)

• See Lincoln3.java (page 35)

"Always code as if the person who ends up
maintaining your code will be a violent
psychopath who knows where you live."

-- Martin Golding

Problem Solving

• The purpose of writing a program is to solve a problem

• Solving a problem consists of multiple activities:

– Understand the problem

– Design a solution

– Consider alternatives and refine the solution

– Implement the solution

– Test the solution

• These activities are not purely linear – they overlap and
interact

Problem Solving

• The key to designing a solution is breaking it
down into manageable pieces

• When writing software, we design separate
pieces that are responsible for certain parts of
the solution

• An object-oriented approach lends itself to this
kind of solution decomposition

• We will dissect our solutions into pieces called
objects and classes

Object-Oriented Programming

• Java is an object-oriented programming language

• As the term implies, an object is a fundamental entity in
a Java program

• Objects can be used effectively to represent real-world
entities

• For instance, an object might represent a bank account

• Each bank account object handles the processing and
data management related to that bank account

19

Objects

• An object has:

– state - descriptive characteristics

– behaviors - what it can do (or what can be done to it)

• The state of a bank account includes its balance

• The behaviors associated with a bank account include
the ability to get the balance, make deposits, and make
withdrawals

• Note that the behavior of an object might change its
state, e.g. making a deposit will increase the balance

Classes

• An object is defined by a class representing a concept

• A class is the blueprint for each instance of an object

• Multiple objects can be created from the same class

• A class has attributes that define the state of each object

• A class has methods that define the behavior of the object

• The class that contains the main method represents the
starting point for a Java program

• The program can and usually does contain more classes
than just the one that contains the main method

Objects and Classes

A Class
(The Concept)

John’s Bank Account
Balance: $5,257.51

Three objects
(Three Instances
of the Concept)

Bill’s Bank Account
Balance: $1,245,069.89

Mary’s Bank Account
Balance: $16,833.27

Multiple objects
of the same class

BankAccount

- balance: float

+ getBalance(): float
+ deposit(float amount): bool
+ withdraw(float amount): bool

22

Java Program Structure
public class BankAccount

{

}

public float getBalance()
{

}
public boolean deposit(float amount)
{

}
public boolean withdraw(float amount)
{

}

method body

attribute definitionprivate float balance;

method body

method body

	Page #1
	Page #2
	Page #3
	Page #4
	Page #5
	Page #6
	Page #7
	Page #8
	Page #9
	Page #10
	Page #11
	Page #12
	Page #13
	Page #14
	Page #15
	Page #16
	Page #17
	Page #18
	Page #19
	Page #20
	Page #21
	Page #22

