
1

Expressions, Data Conversion, and Input

• Expressions

• Operators and Precedence

• Assignment Operators

• Data Conversion

• Input and the Scanner Class

• Reading for this class: L&L, 2.4-2.6, App D

2

Expressions

• An expression is a combination of one or more operators
and operands

• Arithmetic expressions compute numeric results and
make use of the arithmetic operators:

• If either or both operands used by an arithmetic operator
are floating point, then the result is a floating point

Addition +

Subtraction -

Multiplication *

Division /

Remainder %

3

Division and Remainder

• If both operands to the division operator (/) are integers,
the result is an integer (the fractional part is discarded)

• The remainder operator (%) returns the remainder after
dividing the second operand into the first

14 / 3 equals

8 / 12 equals

4

0

14 % 3 equals

8 % 12 equals

2

8

4

Operator Precedence

• Operators can be combined into complex expressions

result = total + count / max - offset;

• Operators have a well-defined precedence which
determines the order in which they are evaluated

• Multiplication, division, and remainder are evaluated
prior to addition, subtraction, and string concatenation

• Arithmetic operators with the same precedence are
evaluated from left to right, but parentheses can be
used to force the evaluation order

• See Appendix D for a more complete list of operators
and their precedence.

5

Operator Precedence

• What is the order of evaluation in the following
expressions?

a + b + c + d + e

1 4 3 2

a + b * c - d / e

3 2 4 1

a / (b + c) - d % e

2 3 4 1

a / (b * (c + (d - e)))

4 1 2 3

6

Assignment Revisited

• The assignment operator has a lower
precedence than the arithmetic operators

First the expression on the right hand

side of the = operator is evaluated

Then the result is stored in the

variable on the left hand side

answer = sum / 4 + MAX * lowest;

1 4 3 2

7

Assignment Revisited

• The right and left hand sides of an assignment

statement can contain the same variable

First, one is added to the

original value of count

Then the result is stored back into count

(overwriting the original value)

count = count + 1;

8

Increment and Decrement

• The increment and decrement operators use only one
operand

• The increment operator (++) adds one to its operand

• The decrement operator (--) subtracts one from its
operand

• The statement

 count++;

 is functionally equivalent to

 count = count + 1;

9

Increment and Decrement

• The increment and decrement operators can be applied in:

– postfix form:

 count++ count--

– prefix form:
 ++count --count

• These operators update the value in the memory location

• When used as part of a larger expression, the prefix form
adds or subtracts one BEFORE the rest of the expression
is evaluated and the postfix form does it AFTERWARDS

• Because of these subtleties, the increment and decrement
operators should be used with care

10

Assignment Operators

• Often we perform an operation on a variable,
and then store the result back into that variable

• Java provides assignment operators to simplify
that process

• For example, the statement

 num += count;

 is equivalent to

 num = num + count;

11

Assignment Operators

• There are many assignment operators in

Java, including the following:

Operator

+=

-=

*=

/=

%=

Example

x += y

x -= y

x *= y

x /= y

x %= y

Equivalent To

x = x + y

x = x - y

x = x * y

x = x / y

x = x % y

12

Assignment Operators

• The right hand side of an assignment operator can be a
complex expression

• The entire right-hand expression is evaluated first, then
the result is combined with the original variable

• Therefore

 result /= (total-MIN) % num;

 is equivalent to

 result = result / ((total-MIN) % num);

13

Assignment Operators

• The behavior of some assignment operators

depends on the types of the operands

• If the operands to the += operator are strings,

the assignment operator performs string

concatenation

• The behavior of an assignment operator (+=) is

always consistent with the behavior of the
corresponding operator (+)

14

Data Conversion

• Sometimes it is convenient to convert data

from one type to another

• For example, in a particular situation we may

want to treat an integer as a floating point

value

• These conversions do not change the type of

a variable or the value that's stored in it – they

only convert a value as part of a computation

15

Data Conversion

• Conversions must be handled carefully to avoid losing
information

• Widening conversions are safest because they tend to
go from a small data type to a larger one (such as a
short to an int)

• Narrowing conversions can lose information because
they tend to go from a large data type to a smaller one
(such as an int to a short)

• In Java, data conversions can occur in three ways:

– assignment conversion

– promotion

– casting

16

Assignment Conversion

• Assignment conversion occurs when a value of one type
is assigned to a variable of another

• For example, the following assignment converts the
value stored in the dollars variable to a double value

double money;

int dollars = 123;

money = dollars; // money == 123.0

• Only widening conversions can happen via assignment

• The type and value of dollars will not be changed

17

Data Conversion

• Promotion happens automatically when operators

in expressions convert their operands

• For example, if sum is a double and count is an

int, the value of count is promoted to a floating

point value to perform the following calculation:

double result = sum / count;

• The value and type of count will not be changed

18

Casting

• Casting is a powerful and dangerous conversion technique

• Both widening and narrowing conversions can be done by
explicitly casting a value

• To cast, the desired type is put in parentheses in front of the
value being converted

• For example, if total and count are integers, but we want
a floating point result when dividing them, we cast total or
count to a double for purposes of the calculation:

double result = (double) total / count;

• Then, the other variable will be promoted, but the value and
type of total and count will not be changed

Some Special Cases

• The default type of a constant with a decimal

point is double:

float f = 1.2; // narrowing conversion

float f = (float) 1.2 // needs a cast

• Results of int divide by zero are different from

float or double divide by zero

• If int count == 0, depends on type of sum:

ave = sum/count;// if int, exception

ave = sum/count;// if double, “NaN”
19

20

Reading Input

• Programs generally need input on which to operate

• The Scanner class provides convenient methods

for reading input values of various types

• A Scanner object can be set up to read input from

various sources, including from the user typing the

values on the keyboard

• Keyboard input is represented by the System.in

object

21

Reading Input
• The following line allows you to use the standard

library Scanner class in statements in your class:

 import java.util.Scanner;

• The following line creates a Scanner object that
reads from the keyboard:

 Scanner scan = new Scanner(System.in);

• The new operator creates the Scanner object

• Once created, the Scanner object can be used
to invoke various input methods, such as:

 String answer = scan.nextLine();

22

Reading Input

• The Scanner class is part of the
java.util class library and must be
imported into a program to be used

• See Echo.java (page 89)

• The nextLine method reads all of the
input until the end of the line is found

• The details of object creation and class
libraries are discussed later in the course

../examples/chap02/Echo.java

23

Input Tokens

• Unless specified otherwise, white space is used to
separate the elements (called tokens) of the input

• White space includes space characters, tabs, new line
characters

• The next method of the Scanner class reads the next
input token and returns it as a String

• Methods such as nextInt and nextDouble read data
of particular types

• See GasMileage.java (page 90)

../examples/chap02/GasMileage.java

