
1

Interactive Applications (CLI) and Math

• Interactive Applications

• Command Line Interfaces

• The Math Class

• Example: Solving Quadratic Equations

• Example: Factoring the Solution

• Reading for this class: L&L, 3.5

2

Interactive Applications (CLI)

• An interactive program with a command line
interface contains a sequence of steps to:
– Prompt the user to enter input data
– Read and save the user’s responses
– Process the data after all input(s) are received

• We can prompt the user:
System.out.println(“prompt text”);

• We can read and format user responses:
type variable = scan.nextType();

3

Interactive Applications (CLI)

• Similar to Quadratic.java (Page 129)
int a, b, c; // integer coefficients
Scanner scan = new Scanner(System.in);

System.out.println(“Enter coefficient A”);
a = scan.nextInt();
System.out.println(“Enter coefficient B”);
b = scan.nextInt();
System.out.println(“Enter coefficient C”);
c = scan.nextInt();
// we have the data to solve the equation
// ax-squared + bx + c = 0 for it’s roots

4

We have the input values, now what?

• To solve the quadratic equation, we need
to program in Java the formulas learned in
high school algebra:
discriminant = b squared – 4ac
root1 = (-b + squareroot of discriminant)/2a
root2 = (-b - squareroot of discriminant)/2a

• How do we program those equations?
• We need to use the Math Class Library,

Expression Evaluation, and Assignment

5

The Math Class

• The Math class is part of the java.lang package

• The Math class contains methods that perform various
mathematical functions

• These include:

– absolute value

– square root

– exponentiation

– trigonometric functions

6

The Math Class

• The methods of the Math class are static methods (also
called class methods)

• Static methods can be invoked through the class name – no
object of the Math class is needed

value = Math.cos(90) + Math.sqrt(delta);

• Similar to Quadratic.java (page 130)
discriminant = Math.pow(b, 2) – 4.0 * a * c;

root1 = (-1.0 * b + Math.sqrt(discriminant))/(2.0 * a);

root2 = (-1.0 * b – Math.sqrt(discriminant))/(2.0 * a);

• Note: We can’t program the + in the formula on page 128 in
Java. We need to calculate each root separately

7

Solving Quadratic Equations

• However, the textbook’s program to solve for the
roots of a quadratic equation is deficient!

• The equations for calculating the roots are
correct but are not used correctly in the program

• Since the user can enter any combination of
three integer values for the coefficients, we need
to analyze the possible special cases where just
computing the formula based on the input values
of “a”, “b”, and “c” is not correct

• This is the introduction to your Project #1

8

Solving Quadratic Equations

• User can enter any values for “a”, “b”, and “c”

• If the user enters values that cannot be
computed properly using the formulas, the
program will fail to operate correctly

• Let’s try a = 1, b = 0, and c = 1

• The program generates two answers
– NaN stands for “Not a Number”

• What happened?

9

Solving Quadratic Equations

• With those coefficient values, the formula
for calculating the discriminant results in a
negative number
discriminant = b * b – 4 * a * c
discriminant = 0 * 0 – 4 * 1 * 1
discriminant = -4

• Later in calculating the roots, the formula
takes the square root of the discriminant

• Mathematically, a negative number does
not have a “real” square root

10

Solving Quadratic Equations

• The Math.sqrt() method can’t provide any “real”
number that is the square root of -4

• In this case, it returns the result “NaN”
• However, in algebra we learned to “fake” the

square root of a negative number by using the
“imaginary” number i (the square root of -1)
Math.sqrt(-4) can be shown as:
Math.sqrt(-1 * 4) which equals:
Math.sqrt(-1) * Math.sqrt(4) which equals:
i * 2.0 where i is the “imaginary” square root of -1

• How can we get our program to print this answer?

11

Solving Quadratic Equations

• We need to write the program so that our
code checks the value of the discriminant
before trying to take the square root of it

• If the value of the discriminant is negative,
we need to construct the correct answer
= “i * ” + Math.sqrt(Math.abs(-4));

• That code will provide the resulting String
= “i * 2.0”

12

Solving Quadratic Equations

• There are other possible values of “a”, “b”, and “c”
that can result in NaN or no valid result

• Suppose the user enters a value of 0 for “a”?
• The formula for the roots divides by (2.0 * a)
• If the value of “a” is 0, the division is impossible
• The expression evaluations will provide the

results NaN or –Infinity
• Again, we need to write the program so that our

code checks the value of “a” before trying to do
the division

13

Solving Quadratic Equations

• If the value of “a” is 0, is there a solution?

• Yes, let’s look at the equation with “a” = 0
0 * Math.pow(x, 2) + b * x + c = 0 is the same as:
b * x + c = 0 which can be solved as a linear equation:
x = - c / b as long as b is not equal to 0!

Note: There is now only one root - not two

• Based on the above, we can see another special
case, if “b” is equal to 0 (but only if “a” is also
equal to 0)

• It is OK for “b” to be equal to 0, if “a” is not 0

14

Solving Quadratic Equations

• Suppose both “a” = 0 and “b” = 0?

• The remaining equation looks like this:
0 + 0 + c = 0

• If the user entered a value of 0 for “c”, then any
value of x is a solution, i.e. 0 + 0 + 0 always = 0

• But, suppose the user had entered a value for “c”
that was not equal to 0?

• Now, there is no possible solution for x

• No value of x can make a non-zero value of “c” be
equal to 0

15

Solving Quadratic Equations

• Now that we have covered all these cases,
what does it mean for our programming of
a program for solving quadratic equations
based on values for “a”, “b”, and “c”?

• We need to write the program so that our
code makes decisions about each of these
possible special cases before just trying to
calculate a result based on the formulas

16

Control Flow

• Up until now, all of our programs just ran
sequentially through a sequence of steps

• Each statement did something and then
continued to the next statement in sequence

• To make decisions while solving a quadratic
equation, we need to control the flow of the
execution of statements in our program

• We will see how to do that in the next lecture

17

Factoring our Program

• But before we do that, let’s see how to
divide our program into smaller parts

• This is called factoring the program
• If we think about it, we can envision two

different things that our program has to do
– Gather input from the user and display results
– Calculate the results based on the formulas

• At a top level, we can create one class for
each of those two parts of the problem

18

Factoring our Program

• Why would we want to break our program
down into two parts or classes?

• There are many possible reasons, two are:
– We may assign two programmers to the job

Each programmer can write one of the classes

– We may be able to reuse one part separately
from the other part, e.g. use the calculation
class with a CLI class initially and re-use it later
with a GUI class to make it more “user friendly”

19

Factoring our Program

• Proposed “class diagram” for our program:

QuadraticCLI

QuadraticSolver

+ main(String []): void

A dotted arrow means that the
QuadraticCLI class “depends
on” the QuadraticSolver class

Remember that one
of our classes must
have a main method

+ getEquation (a : int, b : int, c int) : String
+ getSolution (a : int, b : int, c int) : String

Factoring our Program

• Note that the method names in both classes
are underlined in the class diagram

• That means that they are specified to be
static just like the Math class methods

• We call the QuadraticSolver methods with
the class name and pass the specified
parameters to the method by listing them
inside the ()

• Each method returns a String to be printed
20

21

The QuadraticCLI Class

• Passing the inputs to the QuadraticSolver class

Scanner scan = new Scanner(System.in);

System.out.println(“Enter coefficient A”);
a = scan.nextInt();
System.out.println(“Enter coefficient B”);
b = scan.nextInt();
System.out.println(“Enter coefficient C”);
c = scan.nextInt();

// we have the data to display and solve the equation
// pass a, b, and c as parameters in the method calls
System.out.println(QuadraticSolver.getEquation(a, b, c));
System.out.println(QuadraticSolver.getSolution(a, b, c));

22

The QuadraticSolver Class
• A method to display a quadratic equation

with coefficients a, b, and c as a String
public static String getEquation(int a, int b, int c)

{
String result = null;

// code to concatenate string for returning equation text
result = "Solving: " + a + "x\u00b2 " + ((b >= 0) ? "+ " : "")

+ b + "x " + ((c >= 0) ? "+ " : "") + c + " = 0";

return result;
}

• The above method uses string concatenation
• There is an embedded Unicode value \u00b2 to
get the superscripted 2 to display the x2 term

23

The QuadraticSolver Class

• A method to provide the solution as a String

public String getSolution(int a, int b, int c)
{
String solution = null;

// Use if-else to choose the correct formulas
// using the provided parameters a, b, and c.
// Use string concatenation to create a
// solution String that can be returned
// to the QuadraticCLI class.
. . . ß Your Java statements go here
return solution;

}

	Page #1
	Page #2
	Page #3
	Page #4
	Page #5
	Page #6
	Page #7
	Page #8
	Page #9
	Page #10
	Page #11
	Page #12
	Page #13
	Page #14
	Page #15
	Page #16
	Page #17
	Page #18
	Page #19
	Page #20
	Page #21
	Page #22
	Page #23

