
Boolean Expressions and If

• Flow of Control / Conditional Statements

• The if Statement

• Logical Operators

• The else Clause

• Block statements

• Nested if statements

• Reading for this class: L&L, 5.1 - 5.2

Flow of Control
• Unless specified otherwise, the order of statement

execution through a method is linear:

– one statement after another in sequence

• Some programming statements allow us to:

– decide whether or not to execute a particular statement

– execute a statement over and over, repetitively

• These decisions are based on boolean expressions
(or conditions) that evaluate to true or false

• The order of statement execution is called the flow of
control

3

Conditions/Boolean Expressions

• A condition is often obtained using an equality
operator and/or relational operator which create
boolean expressions that return boolean results:

== equal to

!= not equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

• Note the difference between the equality
operator (==) and the assignment operator (=)

Conditional Statements

• A conditional statement lets us choose which
statement will be executed next

• Therefore they are sometimes called selection
statements

• Conditional statements give us the power to make
basic decisions

• The Java conditional statements are the:

– if statement

– if-else statement

– switch statement

5

The if Statement

• The if statement has the following syntax:

if (condition)

 statement;

if is a Java

reserved word

The condition must be a

boolean expression. It must

evaluate to either true or false.

If the condition is true, the statement is executed.

If it is false, the statement is skipped.

The if Statement

• An example of an if statement:

• First the condition is evaluated -- the value of
sum is either greater than the value of MAX, or it

is not

• If the condition is true, the assignment statement

is executed -- if it isn’t true, it is skipped.

• Either way, the call to println is executed next

• See Age.java (page 214-215)

if (sum > MAX)

 delta = sum - MAX;

System.out.println ("The sum is " + sum);

../examples/chap05/Age.java

Indentation

• The statement controlled by the if statement is

indented to indicate that relationship

• The use of a consistent indentation style makes

a program easier to read and understand

• Although it makes no difference to the compiler,

proper indentation is crucial to human readers

8

Logical Operators

• The following logical operators can also be used
in boolean expressions:

 ! Logical NOT

 && Logical AND

 || Logical OR

• They operate on boolean operands and produce
boolean results

– Logical NOT is a unary operator (it operates on one
operand)

– Logical AND and logical OR are binary operators (each
operates on two operands)

9

Logical NOT

• The logical NOT operation is also called logical

negation or logical complement

• If some boolean condition a is true, then !a is false;

• If a is false, then !a is true

• Logical operations can be shown with a truth table

a !a

true false

false true

10

Logical AND and Logical OR

• The logical AND expression

a && b

 is true if both a and b are true, and false otherwise

• The logical OR expression

a || b

 is true if a or b or both are true, and false otherwise

Logical Operators
• A truth table shows all possible true-false

combinations of the terms

• Since && and || each have two operands,
there are four possible combinations of
conditions a and b

a b a && b a || b

true true true true

true false false true

false true false true

false false false false

Short-Circuited Operators

• The processing of logical AND and logical OR is
“short-circuited”

• If the left operand is sufficient to determine the
result, the right operand is not evaluated

• This coding technique must be used carefully

if (count != 0 && total/count > MAX)

 System.out.println ("Testing…");

13

The if-else Statement

• An else clause can be added to an if statement to
make an if-else statement

• If the condition is true, statement1 is executed; if
the condition is false, statement2 is executed

• One or the other will be executed, but not both

• See Wages.java (page 217)

if (condition)

 statement1;

else

 statement2;

../examples/chap05/Wages.java

Indentation Revisited

• Remember that indentation is for the human

reader and is ignored by the Java compiler

if (total > MAX)

 System.out.println ("Error!!");

 errorCount++;

Despite what is implied by the indentation,

the increment will occur whether the if

condition is true or not, as follows:

if (total > MAX)

 System.out.println ("Error!!");

errorCount++;

15

Block Statements

• Several statements can be grouped into a block

statement delimited by braces

• A block statement can be used wherever a

statement is called for in the Java syntax

if (total > MAX)

{

 System.out.println ("Error!!");

 errorCount++;

}
Now the increment will only occur

when the if condition is true

16

Block Statements

• In an if-else statement, the if portion, or the

else portion, or both, could be block statements

if (total > MAX)

{

 System.out.println ("Error!!");

 errorCount++;

}

else

{

 System.out.println ("Total: " + total);

 current = total*2;

}

17

The Conditional Operator

• Java has a conditional operator that uses a boolean
condition to determine which of two expressions is
evaluated

• Its syntax is:

condition ? expression1 : expression2

• If the condition is true, expression1 is evaluated; if
it is false, expression2 is evaluated

• The value of the entire conditional operator is the value
of the selected expression

18

The Conditional Operator

• The conditional operator is similar to an if-else
statement, except that it is an expression that returns a
single value

• For example:

 larger = ((num1 > num2) ? num1 : num2);

• If num1 is greater than num2, then num1 is assigned to
larger; otherwise, num2 is assigned to larger

• The conditional operator is ternary because it requires
three operands: a condition and two alternative values

19

Nested if Statements

• The statement executed as a result of an if

statement or an else clause can be another if

statement

• These are called nested if statements

• An else clause is matched to the last unmatched

if (no matter what the indentation implies)

• Braces can be used to specify the if statement to

which an else clause belongs

• See MinOfThree.java (page 225)

../examples/chap05/MinOfThree.java

Nested Conditional Operators

• Alternative MinOfThree.java
 Scanner scan = new Scanner (System.in);

 System.out.println ("Enter three integers: ");

 int num1 = scan.nextInt();

 int num2 = scan.nextInt();

 int num3 = scan.nextInt();

 int min = (num1 < num2) ?

 ((num1 < num3) ? num1 : num3) :

 ((num2 < num3) ? num2 : num3);

 System.out.println ("Minimum value: " + min);

Project 1 Application

• Now, you have been shown the Java

statements that you will need to use for

checking the values of “a”, “b”, “c”

• You need to use the appropriate nested if

statements and else clauses in your

getSolution () method

Project 1 Application

• Conditions that may be useful in Project 1

a == 0 // true when a is equal to zero

or

a == 0 && b == 0 && c == 0 // true when

all of them are zero

• Put one of those boolean expressions inside the

parentheses within an if statement

if (a == 0)

or

if (a == 0 && b == 0 && c == 0)

Project 1 Application

• Conditions that may be useful in Project 1

a <= 0 // true when a is negative/zero

or

a <= 0 || b <= 0 || c <= 0 // true when

any of them are negative/zero

• Put one of those boolean expressions inside the

parentheses within an if statement

if (a <= 0)

or

if (a <= 0 || b <= 0 || c <= 0)

