
1

Data Comparisons and Switch

• Data Comparisons

• Switch

• Reading for this class: L&L 5.3, 6.1-6.2

2

Comparing Data

• When comparing data using boolean

expressions, it's important to understand the

nuances of certain data types

• Let's examine some key situations:

– Comparing double/float values for equality

– Comparing characters

– Comparing strings (alphabetical order)

3

Comparing Float Values

• You should rarely use the equality operator (==)
when comparing two floating point values
(float or double)

• Two floating point values are equal only if their
underlying binary representations match exactly

• Computations often result in slight differences
that may be irrelevant

• In many situations, you might consider two
floating point numbers to be "close enough"
even if they aren't exactly equal

4

Comparing Float Values

• Your tolerance for equality could be set as follows:

• To determine the equality of two doubles or floats,
use the following technique:

• If the absolute value of the difference between the
two double/float values is less than the tolerance,
they are considered to be equal, the if condition is
true, and the print statement will execute

if (Math.abs(f1 - f2) < TOLERANCE)

 System.out.println ("Essentially equal");

final double TOLERANCE = 0.000001;

5

Comparing Characters

• As we've discussed, Java character data is based on the
Unicode character set

• Unicode assigns a particular numeric value to each
character and this creates an ordering of characters

• We can use relational operators on character data based
on this ordering

• For example, the character ‘A' is less than the
character 'J' because it comes before it in the Unicode
character set

• L&L Appendix C provides an overview of Unicode

6

Comparing Characters
• In Unicode, the digit characters (0-9) are

contiguous and in order of their numerical
value

• Likewise, the uppercase letters (A-Z) and
lowercase letters (a-z) are contiguous and in
alphabetical order

 Characters Unicode Values

0 – 9 48 through 57

A – Z 65 through 90

a – z 97 through 122

7

Comparing Characters

• Therefore, if we want to base a decision in

our program on whether a character is a

digit or not, we can use the following code:
if (character >= „0‟ && character <= „9‟)

 System.out.println (“Yes, it‟s a digit!”);

• We can also check for a valid upper case

alphabetic character as follows:
if (character >= „A‟ && character <= „Z‟)

 System.out.println (“It‟s a capital letter!”);

8

Comparing Strings
• Remember that in Java a string is an object

• We cannot use the == operator to determine if the values
of two strings are identical (character by character)

• The equals method can be called with strings to
determine if two strings contain exactly the same
characters in the same order

• The equals method returns a boolean result

if (name1.equals(name2))

 System.out.println ("Same name");

9

Comparing Strings

• We cannot use the relational operators to compare strings

• The String class contains a method called compareTo
to determine if one string comes before another

• A call to name1.compareTo(name2)

– returns zero if name1 and name2 are equal (contain the same
characters)

– returns a negative value if name1 is less than name2

– returns a positive value if name1 is greater than name2

10

Comparing Strings
if (name1.compareTo(name2) < 0)

 System.out.println (name1 + "comes first");

else

 if (name1.compareTo(name2) == 0)

 System.out.println ("Same name");

 else

 System.out.println (name2 + "comes first");

• Because comparing characters and

strings is based on a character set, it is

called a lexicographic ordering

11

Lexicographic Ordering
• Lexicographic ordering is not strictly alphabetical

with mixed uppercase and lowercase characters

• For example, the string "Great" comes before

the string "fantastic" because in Unicode the

uppercase letters have lower values than the

lowercase letters. Therefore, ‘G’ is less than ‘f’

• Also, short strings come before longer strings with

the same prefix (lexicographically)

• Therefore "book" comes before "bookcase"

12

The switch Statement

• The switch statement provides another way to

decide which statement to execute next

• The switch statement evaluates an integral

expression (int or char only), then attempts to

match the result to one of several possible cases

• Each case contains a value and a statement list

• The flow of control transfers to the statement list

associated with the first case value that matches

13

The switch Statement

• The general syntax of a switch statement is:

switch (expression)

{

 case value1 :

 statement-list1

 case value2 :

 statement-list2

 case value3 :

 statement-list3

 case ...

}

switch

and
case

are

reserved

words

If expression

matches value2,

control jumps

to here

14

The switch Statement

• Often a break statement is used as the last
statement in each case's statement list

• A break statement causes control to transfer to
the end of the switch statement

• If a break statement is not used, the flow of
control will continue into the next case

• Sometimes this may be appropriate, but often
we only want to execute the statements
associated with one case

15

The switch Statement

switch (option)

{

 case 'A':

 aCount++;

 break;

 case 'B':

 bCount++;

 break;

 case 'C':

 cCount++;

 break;

}

• An example of a switch statement:

16

The switch Statement

• A switch statement can have an optional default
case

• The default case has no associated value and
simply uses the reserved word default

• If there is a default case and no other value
matches, control will transfer to the default
statement list

• If there is no default case and no other value
matches, control falls through to the statement
after the switch without executing any statements

17

The switch Statement

switch (option)

{

 case 'A':

 aCount++;

 break;

 case 'B':

 bCount++;

 break;

 default:

 errorCount++;

 break;

}

• An example of a switch statement using default:

