Data Comparisons and Switch

« Data Comparisons
« Switch
* Reading for this class: L&L 5.3, 6.1-6.2

Comparing Data

 When comparing data using boolean

expressions, it's important to understand the
nuances of certain data types

« Let's examine some key situations:

— Comparing double/float values for equality
— Comparing characters

— Comparing strings (alphabetical order)

Comparing Float Values

You should rarely use the equality operator (==
when comparing two floating point values
(float or double)

Two floating point values are equal only if their
underlying binary representations match exactly

Computations often result in slight differences
that may be irrelevant

In many situations, you might consider two
floating point numbers to be “close enough”
even If they aren't exactly equal

Comparing Float Values

* Your tolerance for equality could be set as follows:
final double TOLERANCE = 0.000001;

* To determine the equality of two doubles or floats,
use the following technique:

if (Math.abs(fl - f£2) < TOLERANCE)
System.out.println ("Essentially equal');

* If the absolute value of the difference between the
two double/float values is less than the tolerance,
they are considered to be equal, the if condition is
true, and the print statement will execute

Comparing Characters

As we've discussed, Java character data is based on the
Unicode character set

Unicode assigns a particular numeric value to each
character and this creates an ordering of characters

We can use relational operators on character data based
on this ordering

For example, the character ‘A"’ is less than the
character 'J' because it comes before it in the Unicode
character set

L&L Appendix C provides an overview of Unicode

Comparing Characters

* In Unicode, the digit characters (0-9) are
contiguous and in order of their numerical
value

* Likewise, the uppercase letters (A-Z) and
lowercase letters (a-z) are contiguous and In
alphabetical order

Characters Unicode Values
0-9 48 through 57
A-Z 65 through 90
a—z 97 through 122

Comparing Characters

* Therefore, If we want to base a decision in
our program on whether a character is a
digit or not, we can use the following code:

if (character >= ‘0’ && character <= '9’)

System.out.println (“Yes, it’s a digit!”);

* We can also check for a valid upper case
alphabetic character as follows:

if (character >= ‘A’ && character <= ‘Z’)

System.out.println (“It’s a capital letter!”);

Comparing Strings
Remember that in Java a string is an object

We cannot use the == operator to determine if the values
of two strings are identical (character by character)

The equals method can be called with strings to
determine if two strings contain exactly the same
characters in the same order

The equals method returns a boolean result

if (namel.equals (name2))
System.out.println ("Same name") ;

Comparing Strings

* We cannot use the relational operators to compare strings

 The String class contains a method called compareTo
to determine if one string comes before another

« Acallto namel.compareTo (name?2)

— returns zero if namel and name?2 are equal (contain the same
characters)

— returns a negative value if namel is less than name?2

— returns a positive value if name1 is greater than name?2

Comparing Strings

if (namel.compareTo (name2) < 0)
System.out.println (namel + "comes first");
else

if (namel.compareTo (name2) == 0)
System.out.println ("Same name") ;
else

System.out.println (name2 + "comes first");

« Because comparing characters and
strings Is based on a character set, It Is
called a lexicographic ordering

10

Lexicographic Ordering

Lexicographic ordering is not strictly alphabetical
with mixed uppercase and lowercase characters

For example, the string "Great" comes before
the string "fantastic" because in Unicode the

uppercase letters have lower values than the
lowercase letters. Therefore, ‘G’ is less than ‘f’

Also, short strings come before longer strings with
the same prefix (lexicographically)

Therefore "book" comes before "bookcase™"

11

The switch Statement

The switch statement provides another way to
decide which statement to execute next

The switch statement evaluates an integral

expression (int or char only), then attempts to
match the result to one of several possible cases

Each case contains a value and a statement list

The flow of control transfers to the statement list
assoclated with the first case value that matches

12

The switch Statement

* The general syntax of a switch statement is:

switch switch (expression)
and {
case case valuel :
are statement-listl
reserved case value2 :
words statement-list2 ¢
case value3 :
statement-list3 If expression
case ... matches value2,

control jumps
} to here

13

The switch Statement

Often a break statement Is used as the last
statement in each case's statement list

A break statement causes control to transfer to
the end of the switch statement

If a break statement Is not used, the flow of
control will continue Into the next case

Sometimes this may be appropriate, but often
we only want to execute the statements
associated with one case

14

The switch Statement

* An example of a switch statement:

switch (option)
{
case 'A':
aCount++;
break;
case 'B':
bCount++;
break;
case 'C':
cCount++;
break;

The switch Statement

A switch statement can have an optional default
case

The default case has no associated value and
simply uses the reserved word default

If there Is a default case and no other value
matches, control will transfer to the default
statement list

If there Is no default case and no other value
matches, control falls through to the statement
after the switch without executing any statements

16

The switch Statement

« An example of a switch statement using default:

switch (option)
{
case 'A':
aCount++;
break;
case 'B':
bCount++;
break;
default:
errorCount++;
break;

