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Loops – While, Do, For

• Repetition Statements
– While

– Do

– For

• Introduction to Arrays

• Reading for this Lecture, L&L, 5.4,6.3-6.4, 
8.1-8.2
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Repetition Statements
• Repetition statements allow us to execute a 

statement or a block of statements multiple times

• Often they are referred to as loops

• Like conditional statements, they are controlled by 
boolean expressions

• Java has three kinds of repetition statements:
while
do
for

• The programmer should choose the right kind of 
loop statement for the situation
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The while Statement

• A while statement has the following syntax:

• If the condition is true, the statement is 
executed

• Then the condition is evaluated again, and if it is 
still true, the statement is executed again

• The statement is executed repeatedly until the 
condition becomes false

while ( condition )
statement;
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The while Statement

• An example of a while statement:

• If the condition of a while loop is false 
initially, the statement is never executed

• Therefore, the body of a while loop will 
execute zero or more times

boolean done = false;
while (!done)
{

body of loop statements;
if (some condition)

done = true;
}
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The while Statement

• Let's look at some examples of loop processing

• A loop can be used to maintain a running sum

• A sentinel value is a special input value that 
represents the end of input (not valid as data!)

• See Average.java (page 237)

• A loop can also be used for input validation, 
making a program more robust

• See WinPercentage.java (page 239)
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Infinite Loops

• Executing the statements in the body of a while
loop must eventually make the condition false

• If not, it is called an infinite loop, which will 
execute until the user interrupts the program

• This is a common logical error

• You should always double check the logic of a 
program to ensure that your loops will terminate
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Infinite Loops

• An example of an infinite loop:

• This loop will continue executing until the 
user externally interrupts the program

boolean done = false;
while (!done)
{

System.out.println (“Whiling away the time ...”);
// Note: no update for the value of done!!

}
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Nested Loops

• Similar to nested if statements, loops can 
be nested as well

• That is, the body of a loop can contain 
another loop

• For each iteration of the outer loop, the 
inner loop iterates completely

• See PalindromeTester.java (page 243)
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Nested Loops

• How many times will the string "Here" be printed?

count1 = 1;
while (count1 <= 10)
{

count2 = 1;
while (count2 <= 20)
{

System.out.println ("Here");
count2++;

}
count1++;

}
10 * 20 = 200
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The do Statement
• A do statement has the following syntax:

• The statement is executed once initially, 
and then the condition is evaluated

• The statement is executed repeatedly until 
the condition becomes false

do
{

statement;
}
while ( condition );
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The do Statement

• An example of a do loop:

• The body of a do loop executes one or 
more times (Note: At least once!)

• See ReverseNumber.java (page 252)

boolean done = false;
do
{

body of loop statements;
if (some condition)

done = true;
} while (!done);
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The for Statement

• A for statement has the following syntax:

for ( initialization ; condition ; increment )
statement;

The initialization
is executed once

before the loop begins

The statement is
executed until the

condition becomes false

The increment portion is executed at 
the end of each iteration
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The for Statement

• A for loop is functionally equivalent to the 
following while loop structure:

initialization;
while ( condition )
{

statement;
increment;

}
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The for Statement

• An example of a for loop:

• The initialization section can be used to 
declare an int variable for counting

• Like a while loop, the condition of a for
loop is tested prior to executing the loop

• Therefore, the body of a for loop will 
execute zero or more times

for (int count=1; count <= 5; count++)
System.out.println (count);
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The for Statement

• The increment section can perform any 
calculation

• A for loop is well suited for executing the  
body a specific number of times that can 
be calculated or determined in advance

• See Multiples.java (page 256)

• See Stars.java (page 258)

for (int num=100; num > 0; num -= 5)
System.out.println (num);
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The for Statement

• Each expression in a for statement is optional

• If the initialization is left out, no initialization is 
performed

• If the condition is left out, it is always considered to 
be true, and therefore creates an infinite loop

• If the increment is left out, no increment operation 
is performed

• “Loop forever” can be written as:
for (;;) 

{body;}
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Introduction to Arrays

• It is very useful to have a group of variables that 
can be processed in a loop where one variable is 
processed during each pass through the loop

• But we don’t want to declare them as individual 
variables, e.g. five individual integer variables:
int num0, num1, num2, num3, num4;

• We can’t use a loop index variable to refer to one 
variable num0, num1, etc without a lot of nested 
if-else statements or a switch statement
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Introduction to Arrays

• Without arrays we would need to do something 
like this (NOTE: Don’t do it this way!):
int num0, num1, num2, num3, num4;
for (int i = 0; i < 5; i++) {

switch (i) {
case 0:

statements using num0;
break;

case 1:
same statements using num1;
break;

// three more cases needed here
}

}
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Introduction to Arrays

• We can declare an array of variables of a 
specific type with the capability to use an 
index variable to select one variable
int [ ] nums = new int [5];

• The above declares 5 variables of type int
• The valid array index values are 0-4 (not 
1-5)

• Note: Values have not been assigned to 
those 5 variables in the array yet.
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Introduction to Arrays

• To assign values to each variable, we can 
use a for-loop:
for (int i = 0; i < 5; i++)

nums[i] = some valid integer expression;

• A single int variable can be selected using 
an integer expression or value inside the [ ]: 
int result = nums[integer expression];
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Arrays and Initializer Lists

• An array can be defined and initialized so that 
each element contains a specific value:
char [] vowels = {‘a’, ‘e’, ‘i’, ‘o’, 
‘u’}; 

• Java uses the initializer list to determine how 
long the array must be and allocates that 
many elements

• An initializer list can be used only when the 
array is first declared, as above

• Afterward, each individual element of the array 
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Arrays and Loops

• Now we can coordinate the processing of 
one variable with the execution of one pass 
through a loop using an index variable, e.g:
int MAX = 5; // symbolic constant

int [ ] nums = new int [MAX];

for (int i = 0; i < MAX; i++) {

// use i as array index variable

Java statements using nums[i];

}
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Alternative Loop Control Condition

• Arrays are objects (but, not based on a class)

• Each array has an attribute “length” that we 
can access to get a value equal to the length 
of that array, e.g.nums.length is equal to MAX:
int MAX = 5; // symbolic constant

int [ ] nums = new int [MAX];

for (i = 0; i < nums.length; i++) {

// use i as array index variable

in Java statements using nums[i];

}



Method versus Attribute

• Remember that the String class had a 
length method, that we accessed as:
int length = stringName.length();

• For an array length, we access a length 
attribute not a method so there is no ():
int length = arrayName.length;

• We will get into this subtle distinction in 
more detail after the first exam.
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