
1

Loops – While, Do, For

• Repetition Statements
– While

– Do

– For

• Introduction to Arrays

• Reading for this Lecture, L&L, 5.4,6.3-6.4,
8.1-8.2

2

Repetition Statements
• Repetition statements allow us to execute a

statement or a block of statements multiple times

• Often they are referred to as loops

• Like conditional statements, they are controlled by
boolean expressions

• Java has three kinds of repetition statements:
while
do
for

• The programmer should choose the right kind of
loop statement for the situation

3

The while Statement

• A while statement has the following syntax:

• If the condition is true, the statement is
executed

• Then the condition is evaluated again, and if it is
still true, the statement is executed again

• The statement is executed repeatedly until the
condition becomes false

while (condition)
statement;

4

The while Statement

• An example of a while statement:

• If the condition of a while loop is false
initially, the statement is never executed

• Therefore, the body of a while loop will
execute zero or more times

boolean done = false;
while (!done)
{

body of loop statements;
if (some condition)

done = true;
}

5

The while Statement

• Let's look at some examples of loop processing

• A loop can be used to maintain a running sum

• A sentinel value is a special input value that
represents the end of input (not valid as data!)

• See Average.java (page 237)

• A loop can also be used for input validation,
making a program more robust

• See WinPercentage.java (page 239)

6

Infinite Loops

• Executing the statements in the body of a while
loop must eventually make the condition false

• If not, it is called an infinite loop, which will
execute until the user interrupts the program

• This is a common logical error

• You should always double check the logic of a
program to ensure that your loops will terminate

7

Infinite Loops

• An example of an infinite loop:

• This loop will continue executing until the
user externally interrupts the program

boolean done = false;
while (!done)
{

System.out.println (“Whiling away the time ...”);
// Note: no update for the value of done!!

}

8

Nested Loops

• Similar to nested if statements, loops can
be nested as well

• That is, the body of a loop can contain
another loop

• For each iteration of the outer loop, the
inner loop iterates completely

• See PalindromeTester.java (page 243)

9

Nested Loops

• How many times will the string "Here" be printed?

count1 = 1;
while (count1 <= 10)
{

count2 = 1;
while (count2 <= 20)
{

System.out.println ("Here");
count2++;

}
count1++;

}
10 * 20 = 200

10

The do Statement
• A do statement has the following syntax:

• The statement is executed once initially,
and then the condition is evaluated

• The statement is executed repeatedly until
the condition becomes false

do
{

statement;
}
while (condition);

11

The do Statement

• An example of a do loop:

• The body of a do loop executes one or
more times (Note: At least once!)

• See ReverseNumber.java (page 252)

boolean done = false;
do
{

body of loop statements;
if (some condition)

done = true;
} while (!done);

12

The for Statement

• A for statement has the following syntax:

for (initialization ; condition ; increment)
statement;

The initialization
is executed once

before the loop begins

The statement is
executed until the

condition becomes false

The increment portion is executed at
the end of each iteration

13

The for Statement

• A for loop is functionally equivalent to the
following while loop structure:

initialization;
while (condition)
{

statement;
increment;

}

14

The for Statement

• An example of a for loop:

• The initialization section can be used to
declare an int variable for counting

• Like a while loop, the condition of a for
loop is tested prior to executing the loop

• Therefore, the body of a for loop will
execute zero or more times

for (int count=1; count <= 5; count++)
System.out.println (count);

15

The for Statement

• The increment section can perform any
calculation

• A for loop is well suited for executing the
body a specific number of times that can
be calculated or determined in advance

• See Multiples.java (page 256)

• See Stars.java (page 258)

for (int num=100; num > 0; num -= 5)
System.out.println (num);

16

The for Statement

• Each expression in a for statement is optional

• If the initialization is left out, no initialization is
performed

• If the condition is left out, it is always considered to
be true, and therefore creates an infinite loop

• If the increment is left out, no increment operation
is performed

• “Loop forever” can be written as:
for (;;)

{body;}

17

Introduction to Arrays

• It is very useful to have a group of variables that
can be processed in a loop where one variable is
processed during each pass through the loop

• But we don’t want to declare them as individual
variables, e.g. five individual integer variables:
int num0, num1, num2, num3, num4;

• We can’t use a loop index variable to refer to one
variable num0, num1, etc without a lot of nested
if-else statements or a switch statement

18

Introduction to Arrays

• Without arrays we would need to do something
like this (NOTE: Don’t do it this way!):
int num0, num1, num2, num3, num4;
for (int i = 0; i < 5; i++) {

switch (i) {
case 0:

statements using num0;
break;

case 1:
same statements using num1;
break;

// three more cases needed here
}

}

19

Introduction to Arrays

• We can declare an array of variables of a
specific type with the capability to use an
index variable to select one variable
int [] nums = new int [5];

• The above declares 5 variables of type int
• The valid array index values are 0-4 (not
1-5)

• Note: Values have not been assigned to
those 5 variables in the array yet.

20

Introduction to Arrays

• To assign values to each variable, we can
use a for-loop:
for (int i = 0; i < 5; i++)

nums[i] = some valid integer expression;

• A single int variable can be selected using
an integer expression or value inside the []:
int result = nums[integer expression];

21

Arrays and Initializer Lists

• An array can be defined and initialized so that
each element contains a specific value:
char [] vowels = {‘a’, ‘e’, ‘i’, ‘o’,
‘u’};

• Java uses the initializer list to determine how
long the array must be and allocates that
many elements

• An initializer list can be used only when the
array is first declared, as above

• Afterward, each individual element of the array

22

Arrays and Loops

• Now we can coordinate the processing of
one variable with the execution of one pass
through a loop using an index variable, e.g:
int MAX = 5; // symbolic constant

int [] nums = new int [MAX];

for (int i = 0; i < MAX; i++) {

// use i as array index variable

Java statements using nums[i];

}

23

Alternative Loop Control Condition

• Arrays are objects (but, not based on a class)

• Each array has an attribute “length” that we
can access to get a value equal to the length
of that array, e.g.nums.length is equal to MAX:
int MAX = 5; // symbolic constant

int [] nums = new int [MAX];

for (i = 0; i < nums.length; i++) {

// use i as array index variable

in Java statements using nums[i];

}

Method versus Attribute

• Remember that the String class had a
length method, that we accessed as:
int length = stringName.length();

• For an array length, we access a length
attribute not a method so there is no ():
int length = arrayName.length;

• We will get into this subtle distinction in
more detail after the first exam.

24

	Page #1
	Page #2
	Page #3
	Page #4
	Page #5
	Page #6
	Page #7
	Page #8
	Page #9
	Page #10
	Page #11
	Page #12
	Page #13
	Page #14
	Page #15
	Page #16
	Page #17
	Page #18
	Page #19
	Page #20
	Page #21
	Page #22
	Page #23
	Page #24

