
1

More on Arrays and Loops

• Reading for this Lecture:

– Section 5.4, 6.3-6.4, 8.1-8.2

• Break and Continue in Loops

• Arrays and For-each Loops

• Arrays and Loops - Examples

2

Break and Continue in Loops

• The break statement causes execution to

“break” out of the repetitive loop execution

(goes to just outside the loop’s closing “}”)

• The continue statement causes execution

to “continue” at the end of this pass of a loop

(goes to just inside the loop’s closing “}”)

• Both are discouraged because an alternative

way of coding the logic is usually available

3

Break and Continue in Loops

• Bad practice to use an infinite loop with

only break statements to exit the loop:

while (true)

{

 if (normal exit condition)

 break;

 // body of loop

}

4

Break and Continue in Loops

• Accepted practice for a loop with a normal
exit condition to use break statements for
exiting the loop on error condition(s):
while (normal exit condition)

{

 if (some error condition) {

 // print an error message e.g.

 break;

 }

 // rest of body of loop

}

5

Break and Continue in Loops

• Not a good practice to use continue at all:

while (normal exit condition)

{

 if (condition1)

 continue;

 // rest of body of loop

}

• Use an if statement without continue as on

the next slide

6

Break and Continue in Loops

• Use if alone rather than continue:

while (normal exit condition)

{

 if (condition2)

 {

 // rest of body of loop

 }

}

• Note: condition2 == !condition1

7

“for-each” with Arrays
• We can use “for-each” loops to access the elements

in an array:

• Example Code:

boolean [] array = {true, false, true};

// for-each loop – note difference with for

for (boolean entry : array)

System.out.println(entry);

• Example Run:

true

false

true

“for-each” with Arrays

• Note limitation of “for-each” versus “for”

• We can not initialize or update the element

values in the array using a “for-each” loop

for(int num : nums)

 num = 5; // doesn’t update element

• We must use a regular “for” loop for that

for (int i = 0; i < nums.length; i++)

 nums[i] = 5;

8

Arrays and Loops - Examples

public class BasicArray

{

 public static void main (String[] args)

 {

 final int LIMIT = 15, MULTIPLE = 10;

 int[] list = new int[LIMIT];

 // Initialize the array values

 for (int index = 0; index < LIMIT; index++)

 list[index] = index * MULTIPLE;

 list[5] = 999; // change one array value

 // Print the array values

 for (int value : list)

 System.out.print (value + " ");

 }

}

> run BasicArray

0 10 20 30 40 999 60 70 80 90 100 110 120 130 140 >

9

Arrays and Loops - Examples
public class ArrayExample

{

 public static void main(String [] args)

 {

 char [] vowels = {'a', 'e', 'i', 'o', 'u'};

 int [] counts = new int[vowels.length];

 String s = "Now is the time for all good men to come to the aid of their country.";

 for (int i = 0; i < vowels.length; i++) {

 for (int j = 0; j < s.length(); j++)

 if (vowels[i] == s.charAt(j))

 counts[i]++;

 }

 for (int i = 0; i < vowels.length; i ++)

 System.out.println(vowels[i] + "\'s = " + counts[i]);

 }

}

> run ArrayExample

a's = 2

e's = 6

i's = 4

o's = 9

u's = 1

>

10

