
1

Objects, Classes, and Packages

• “Static” Classes

• Introduction to Classes

• Object Variables and Object References

• Instantiating Objects

• Using Methods in Objects

• Reading for this Lecture: L&L, 3.1 - 3.3

• Familiarize yourself with Sun Website as a

reference for the Java Class Library

“Static” Classes

• A class that has static members only – both

attributes and methods is a “static” class

• We do not instantiate any objects of that class

• We use the class name to access its members

• Examples:

– Math class

Math.sqrt(doubleValue) or Math.PI

– QuadraticSolver class in Project 1

QuadraticSolver.getSolution()

2

“Static” Classes

3

QuadraticSolver

Typically, there are no variables

There may be some class constants

+ getEquation(a : int, b : int, c : int) : String

+ getSolution(a : int, b : int, c : int) : String

Class Name

List of its

Variables

List of its

Methods

Math

+ PI

 (Other constants would be here)

+ sqrt(value : double) : double

 (Other methods would be here)

Class Name

List of its

Variables

List of its

Methods

“Static” classes

• In such a class, we define attributes and

methods including the reserved word static

• Examples:

– In the Math class source code

public static final double PI = 3.14…..;

public static double sqrt(double input) { }

– In the QuadraticSolver source code

public static String getEquation(int a, int b, int c) { }

public static String getSolution(int a, int b, int c) { }

4

“Static” Classes

• Although this is a valid way to break a Java

program into smaller pieces, it is not the true

intent of Object-Oriented Programming (OOP)

• It is more like procedural programming (e.g. C)

• In true OOP, we:

– Use classes to encapsulate data and use methods

to define the valid operations on that data

– Instantiate objects from the classes and access

methods using object names – not class names
5

6

Introduction to Classes

• A class defines the attributes and behavior

of a specific type of object

– Attributes are variables declared in the class

– Behaviors are methods defined in the class

• Normally, we access an object by calling a

method defined by its class

• We may sometimes access an attribute

defined by its class, but this is discouraged

7

“Classifying” into Classes

• To understand the context of the word “class”

in Java, think about the word “classify”

• Classes “classify” different “objects” based

on the similarities in attributes and behaviors

• The desks, chairs, and tables in this room

can be classified as “Furniture” class objects

• There’s a sense of common attributes and

behaviors that all “Furniture” objects share

8

Introduction to Classes

• A class has a name that we can use as if it were a

data type when declaring a variable

• When we declare a variable with the name of a

class as its type, we are creating a reference

variable (It can contain a reference to an object)

• We access an object’s methods / attributes using

the reference variable name and the . notation, e.g.

ClassName objectName; //reference variable

objectName.methodName() // Note the ()

objectName.variableName // Note no ()

9

Example of a Class Definition

• We can draw a diagram of a class to outline

its important features before writing code –

its name, attributes, and behaviors

BankAccount

- balance

. . .

+ BankAccount (initial : double)

 Note: Constructor

+ getBalance() : double

+ deposit(amount : double) : boolean

+ withdraw(amount : double) : boolean

Class Name

List of its

Variables

List of its

Methods

10

Example of a Class Definition

public class BankAccount {

 // an attribute or variable

 private double balance;

 // the constructor method

 public BankAccount(double initial)

 {

 balance = initial;

 }

11

Example of a Class Definition

 // other behaviors or normal methods

 public double getBalance()

 {

 return balance;

 }

 public boolean deposit(double amount)

 {

 balance += amount;

 return true;

 }

 // additional behaviors or methods

} // end of class definition

12

Creating Objects

• To declare a variable as a reference to a

BankAccount object, we use the class name

as the type name

 BankAccount myAccount;

• This declaration does not create an object

• It only creates a reference variable that can

hold a reference to a BankAccount object

13

Example of a Class Definition

• Declaring a BankAccount object:

BankAccount myAccount =

 new BankAccount(100.00); //constructor

• Accessing other BankAccount methods:

boolean status = myAccount.deposit(50.00);

double myMoney = myAccount.getBalance();

• Why can’t we just do this?

myAccount.balance += 50.00;

14

Prototype for a Class Definition

• We use the Java reserved word private to
prevent access to a variable or method from
code that is written outside the class

• We use the Java reserved word public to
allow access to a variable or method from
code that is written outside the class

• Normally, we declare variables to be private

• Normally, we declare methods to be public

• We will see some valid exceptions later

15

Creating Objects

• We use the new operator to create an object

• Creating an object is called instantiation

• An object is an instance of a particular class

• myAccount is assigned a reference to an object of

type BankAccount that encapsulates the balance

BankAccount myAccount = new BankAccount(100.00);

This calls the BankAccount constructor, which

is a special method that initializes the object

Instantiation operator

16

Invoking Methods

• Once an object has been instantiated, we
can use the dot operator to invoke or “call”
any of the object’s methods

 double myMoney =

 myAccount.getBalance();

• A method invocation can be thought of as:

– Asking an object to perform a service OR

– Doing something to the state of the object

17

References

• A primitive variable contains the value itself, but a
reference variable contains an object reference

• An object reference can be thought of as a pointer
to the location of the object in memory

• Rather than dealing with arbitrary address values,
we often depict a reference graphically

$100.00 BankAccount myAccount

int num1 38

BankAccount object “Reference”

(or Pointer)

18

Assignment Revisited

• The act of assignment takes a copy of a value
and stores it in a variable

• For primitive types:
num1 38

num2 96
Before:

num2 = num1;

num1 38

num2 38
After:

19

Reference Assignment
• For object references, assignment copies

the reference:

if (myAccount == yourAccount) // note use of ==

 System.out.println(“The Same”); // no

yourAccount = myAccount;

if(myAccount == yourAccount)

 System.out.println(“The Same”); //yes

myAccount

yourAccount
Before:

$100.00

$50.00

After:
$100.00

$50.00

Garbage: See later slide

myAccount

yourAccount

20

Aliases

• Two or more references that refer to the same
object are called aliases of each other

• One object can be accessed using more than
one reference variable

• Changing an object via one reference variable
changes it for all of its aliases, because there is
really only one object

• Aliases can be useful, but should be managed
carefully (Do you want me to be able to withdraw
money from your account? I doubt it!)

21

Garbage Collection

• When there are no longer any variables containing
a reference to an object (e.g. the $50.00 on the
earlier slide), the program can no longer access it

• The object is useless and is considered garbage

• Periodically, Java performs automatic garbage
collection and returns an object's memory to the
system for future use

• In other languages such as C/C++, the programmer
must write explicit code to do the garbage collection

22

Garbage Collection

• Setting reference variable’s value to null,
makes the object garbage (unavailable):

myAccount = null;

myAccount Before: $100.00

Garbage now

null After:

$100.00

No object myAccount

23

Garbage Collection

• If a reference variable’s value is equal to

null, any reference to an attribute or method

of that object will cause your program to fail.

myAccount = new BankAccount(100.00);

System.out.println(myAccount.balance()); // OK

myAccount = null; // $100 BankAccount => garbage

System.out.println(myAccount.balance()); // Fails

