Objects, Classes, and Packages

“Static” Classes

Introduction to Classes

Object Variables and Object References
nstantiating Objects

JUsing Methods in Objects

Reading for this Lecture: L&L, 3.1 - 3.3

—amiliarize yourself with Sun Website as a
reference for the Java Class Library

1

“Static” Classes

A class that has static members only — both
attributes and methods is a “static” class

We do not instantiate any objects of that class
We use the class name to access Iits members

Examples:

— Math class
Math.sqgrt(doubleValue) or Math.PI

— QuadraticSolver class in Project 1
QuadraticSolver.getSolution()

“Static” Classes

Class Name ——»

List of its -
Variables

List of its -
Methods

Class Name ———»

List of its -
Variables

List of its -
Methods

Math

+ Pl
(Other constants would be here)

+ sqrt(value : double) : double
(Other methods would be here)

QuadraticSolver

Typically, there are no variables
There may be some class constants

+ getEquation(a : int, b : int, ¢ : int) : String
+ getSolution(a : int, b : int, ¢ : int) : String

“Static” classes

* In such a class, we define attributes and
methods including the reserved word static

« Examples:

— In the Math class source code
public static final double Pl =3.14....,;
public static double sgrt(double input) { }
— In the QuadraticSolver source code

public static String getEquation(int a, int b, intc) { }
public static String getSolution(int a, int b, intc) { }

“Static” Classes

 Although this Is a valid way to break a Java
program into smaller pieces, It Is not the true
Intent of Object-Oriented Programming (OOP)

* Itis more like procedural programming (e.g. C)
* In true OOP, we:

— Use classes to encapsulate data and use methods
to define the valid operations on that data

— Instantiate objects from the classes and access
methods using object names — not class names

5

Introduction to Classes

* A class defines the attributes and behavior
of a specific type of object

— Attributes are variables declared in the class
— Behaviors are methods defined in the class

* Normally, we access an object by calling a
method defined by Its class

* We may sometimes access an attribute
defined by its class, but this is discouraged

6

“Classifying” into Classes

To understand the context of the word “class”
in Java, think about the word “classify”

Classes “classify” different “objects” based
on the similarities in attributes and behaviors

The desks, chairs, and tables in this room
can be classified as “Furniture” class objects

There’s a sense of common attributes and
behaviors that all “Furniture” objects share

v

Introduction to Classes

A class has a name that we can use as If it were a
data type when declaring a variable

 When we declare a variable with the name of a
class as its type, we are creating a reference
variable (It can contain a reference to an object)

« We access an object’s methods / attributes using
the reference variable name and the . notation, e.g.
ClassName objectName; //reference variable
objectName.methodName () // Note the ()

objectName.variableName // Note no ()

Example of a Class Definition

» \We can draw a diagram of a class to outline
Its Important features before writing code —
Its name, attributes, and behaviors

Class Name — BankAccount
List of its - - balance
Variables

+ BankAccount (initial : double)

List of its - Note: Constructor
Methods + getBalance() : double

+ deposit(amount : double) : boolean

+ withdraw(amount : double) : boolean

Example of a Class Definition

public class BankAccount {
// an attribute or variable
private double balance;

// the constructor method
public BankAccount (double 1nitial)

{

balance = 1nitial;

10

}

Example of a Class Definition

// other behaviors or normal methods

public double getBalance ()
{

return balance;
}

public boolean deposit (double amount)

{

balance += amount;
return true;

// additional behaviors or methods
// end of class definition

11

Creating Objects

* To declare a variable as a reference to a
BankAccount object, we use the class nhame
as the type name

BankAccount myAccount;
* This declaration does not create an object

* |t only creates a reference variable that can
hold a reference to a BankAccount object

12

Example of a Class Definition

« Declaring a BankAccount object:
BankAccount myAccount =

new BankAccount (100.00); //constructor

« Accessing other BankAccount methods:
boolean status = myAccount.deposit (50.00);

double myMoney = myAccount.getBalance ()

 Why can’t we just do this?
myAccount.balance += 50.00;

13

Prototype for a Class Definition

We use the Java reserved word private to
prevent access to a variable or method from

code that is written outside the ¢
We use the Java reserved word

ass
oublic to

allow access to a variable or method from
code that is written outside the class

Normally, we declare variables to be private
Normally, we declare methods to be public
We will see some valid exceptions later

14

Creating Objects

 We use the new operator to create an object

BankAccount myAccount = new BankAccount (100.00) ;

/1

Instantiation operator

This calls the BankAccount constructor, which
Is a special method that initializes the object

« Creating an object is called instantiation

* An object Is an instance of a particular class

« myAccount IS assigned a reference to an object of
type BankAccount that encapsulates the balance

15

Invoking Methods

* Once an object has been instantiated, we
can use the dot operator to invoke or “call”
any of the object’'s methods

double myMoney =
myAccount.getBalance () ;
* A method invocation can be thought of as:

— Asking an object to perform a service OR
— Doing something to the state of the object

16

References

« A primitive variable contains the value itself, but a
reference variable contains an object reference

* An object reference can be thought of as a pointer
to the location of the object in memory

« Rather than dealing with arbitrary address values,
we often depict a reference graphically

int numl 38
BankAccount myAccount ={ $100.00]
“Reference” BankAccount object

(or Pointer) 17

Assignment Revisited

* The act of assignment takes a copy of a value
and stores it in a variable

« For primitive types:

numl | 38
Before:

num2 | 96
num2 = numl;

numl | 38
After:

num2 | 38

Reference Assignment

* For object references, assignment copies
the reference:

myAccount ————+[$100.00]
Before:
yourAccount ————*[$50.00]
if (myAccount == yourAccount) // note use of ==

System.out.println(“"The Same”); // no
yourAccount = myAccount;

myAccount ———_+[$100.00]

After:
yourAccount -———Jq $50.00]
Garbage: See later slide

if (myAccount == yourAccount)
System.out.println (“"The Same”); //yes 19

Allases

Two or more references that refer to the same
object are called aliases of each other

One object can be accessed using more than
one reference variable

Changing an object via one reference variable
changes it for all of its aliases, because there Is
really only one object

Aliases can be useful, but should be managed
carefully (Do you want me to be able to withdraw
money from your account? | doubt it!)

20

Garbage Collection

When there are no longer any variables containing
a reference to an object (e.g. the $50.00 on the
earlier slide), the program can no longer access it

The object is useless and is considered garbage

Periodically, Java performs automatic garbage
collection and returns an object's memory to the
system for future use

In other languages such as C/C++, the programmer
must write explicit code to do the garbage collection

21

Garbage Collection

« Setting reference variable’s value to null,
makes the object garbage (unavailable):

Before: myAccount | —f+ $100.00 |

myAccount = null;

After: myAccount | null 7> No object

Garbage now
[s100.00 |

Garbage Collection

* If a reference variable’s value is equal to
null, any reference to an attribute or method
of that object will cause your program to fail.

myAccount = new BankAccount (100.00);
System.out.println (myAccount.balance()); // OK
myAccount = null; // $100 BankAccount => garbage

System.out.println (myAccount.balance()); // Fails

23

