Class Library, Formatting, Wrapper
Classes, and JUnit Testing

« Java Class Library (Packages)

* Formatting Output

* Wrapper Classes and Autoboxing

« JUnit Testing

* Reading for this Lecture: L&L, 3.3 — 3.8

Class LI

braries

A class library Is a collection of classes that we can
use when developing programs

The Java standard class library is part of any Java

development environme

nt

Its classes are not part of the Java language per

se, but we rely on them

Various classes we've a
Scanner, String) are
class library (Look them

neavily

ready used (System,

part of the Java standard
up on Sun website)

Other class libraries can be obtained through third

party vendors, or you can create them yourself

2

Packages

* The classes of the Java standard class library
are organized into packages

« Some packages in the standard class library are:

Package

java.lang
java.applet
java.awt
javax.swing
java.net

java.util
javax.xml.parsers

Purpose

General support

Creating applets for the web

Graphics and graphical user interfaces
Additional graphics capabilities
Network communication

Utilities

XML document processing

The import Declaration

* When you want to use a class contained in a
package, you can use its fully qualified name

Java.util.Scanner scan =

 Or you can import the package containing the
class and just use the class nhame Scanner

import jJava.util.Scanner;

Scanner scan =

- To import all classes in a particular package, you
can use the * wildcard character

import java.util.*;

The import Declaration

All classes of the java.lang package are
Imported automatically into all programs

It's as If all programs contain the following line:
import java.lang.*;

That's why we didn't have to import the System
or String classes explicitly in earlier programs

The Scanner class, on the other hand, is part of
the java.util package, so that class must be
Imported as part of its package

Formatting Output

 Look at NumberFormat and DecimalFormat
classes In the text

* They provide you with ways to output
numbers with a predefined precision
* For example:

Printing double value of Pi 3.141592...
Printing only 2 decimal digits 3.14

Leading Blanks for Numbers

* There Is no Java library mechanism to put
leading blanks on digit strings to achieve
right hand alignment of column of numbers

* Need to write nested conditional code:

System.out.println("Number is: " +
(n<10? " " 4+ n
(H<100? " "+ n :

(n<1000? " " + n :
n))));

Wrapper Classes

 The java.lang package contains a wrapper
class that corresponds to each primitive type:

Primitive Type

Wrapper Class

byte
short
int
long
float
double
char
boolean

void

Byte
Short
Integer
Long
Float
Double
Character
Boolean

Void

Wrapper Classes

The following declaration creates an Integer
object which is a reference to an object with the
Integer value 40

Integer age = new Integer (40);

An object of a wrapper class is used in situations
where a primitive value will not suffice

For example, some objects serve as containers
of other objects

Primitive values could not be stored in such
containers, but wrapper objects could be

Wrapper Classes

« Wrapper classes may contain static methods that
help manage the associated type

— For example, the Integer class contains a method to
convert digits stored in a String to an int value:

num = Integer.parselnt (str);

* Wrapper classes often contain useful constants

— For example, the Integer class contains MIN_VALUE
and MAX_VALUE for the smallest and largest int values

10

Autoboxing

« Autoboxing is the automatic conversion of a
primitive value to a corresponding wrapper object:

Integer obj;

int num = 42;

obj] = num;
* The assignment creates the appropriate Integer
object wrapping a value of 42

* The reverse conversion (called unboxing) also
occurs automatically as needed

11

Junit Testing

Testing Is critical to software quality

Good test plans are difficult to specify but
also difficult to document precisely

Good testing must be repeatable
Good testing is tedious
Testing Is a good candidate for automation

Some methodologies such as “Extreme
Programming” mandate daily builds and
automated unit testing

12

Junit Testing

In project 1, when we developed our Java code
for the QuadraticSolver class, we used the CLI
class itself as the “driver” to execute test cases

We manually entered our test case values and
visually verified whether the response provided
was correct or not

This testing process was labor intensive!!

The JUnit framework helps us build a “test case”
class to automate testing of a “class under test”

13

Junit Testing

“junit.framework.TestCase Class”

\
|

TestCase

TestSolver “Driver Class”

\
N

TestSolver

+ assertEquals()

Q extends

“Class Under Test” =~

==

+ test2RealRoots()

depends on

QuadraticSolver

+ setA()

+ toString()
+ getSolution()

14

Junit Testing

e Useful method inherited from TestCase class:
assertEquals (Object expected, Object actual)

assertEquals (‘expected”, cut.toString());

* The assertEquals method flags discrepancies
between the “expected” value and the result
returned by the “class under test” method()

« assertEquals method automatically displays
the difference between the “expected value”
and the actual return value received

15

Junit Testing

» Other useful assert... methods
assertEquals (double expected value,
double actual value,
double threshold wvalue)

« Automatically compares absolute difference
between first two parameters with a threshold
assertEquals (4.3, cut.getDbl(), 0.1);

16

Junit Testing

» Useful assert... methods for boolean data type
assertTrue (boolean actual value)

« Automatically expects returned value is true
assertTrue (cut.getBoolean()) ;

assertFalse (boolean actual value)

« Automatically expects returned value Is false
assertFalse (cut.getBoolean()) ;

17

Junit Test for QuadraticSolver

import junit.framework.TestCase;

public class TestSolver extends TestCase {
private QuadraticSolver cut;

public TestSolver()
{

// nothing needed here

}

/I First of six test case methods for the QuadraticSolver class
public void test2RealRoots()

{
assertEquals("Solving: 1x\u0O0b2 + Ox -1 = 0", QuadraticSolver.getEquation(1, 0, -1));

assertEquals("Root 1 is 1.0\nRoot 2 is -1.0", QuadraticSolver.getSolution(1, 0, -1));

18

Junit Testing

« Test Case Execution
1 test failed:
TestSolver

testOnlylRoot

File: C:\Documents and Settings\bobw\My
Documents\bobw\public_htmNCS110\Project1\JUnitSolutio
n\TestSolver.java [line: 48]

Failure: expected:<......> but was:<...1...>

(I removed part of “should be” string constant to create error) 19

Junit Testing

The Java code Iin the TestCase class(es)
orecisely documents the test cases

t allows them to be run automatically

t allows people other than the test designer
to run them without knowing the details

It prevents oversights in identification of any
discrepancies in the results

20

