
1

Class Library, Formatting, Wrapper

Classes, and JUnit Testing

• Java Class Library (Packages)

• Formatting Output

• Wrapper Classes and Autoboxing

• JUnit Testing

• Reading for this Lecture: L&L, 3.3 – 3.8

2

Class Libraries
• A class library is a collection of classes that we can

use when developing programs

• The Java standard class library is part of any Java
development environment

• Its classes are not part of the Java language per
se, but we rely on them heavily

• Various classes we've already used (System,
Scanner, String) are part of the Java standard
class library (Look them up on Sun website)

• Other class libraries can be obtained through third
party vendors, or you can create them yourself

3

Packages

• The classes of the Java standard class library

are organized into packages

• Some packages in the standard class library are:

Package

java.lang

java.applet

java.awt

javax.swing

java.net

java.util

javax.xml.parsers

Purpose

General support

Creating applets for the web

Graphics and graphical user interfaces

Additional graphics capabilities

Network communication

Utilities

XML document processing

4

The import Declaration
• When you want to use a class contained in a

package, you can use its fully qualified name

java.util.Scanner scan = ...

• Or you can import the package containing the
class and just use the class name Scanner

import java.util.Scanner;

Scanner scan = ...

• To import all classes in a particular package, you
can use the * wildcard character

import java.util.*;

5

The import Declaration

• All classes of the java.lang package are
imported automatically into all programs

• It's as if all programs contain the following line:

import java.lang.*;

• That's why we didn't have to import the System
or String classes explicitly in earlier programs

• The Scanner class, on the other hand, is part of
the java.util package, so that class must be
imported as part of its package

6

Formatting Output

• Look at NumberFormat and DecimalFormat

classes in the text

• They provide you with ways to output

numbers with a predefined precision

• For example:

Printing double value of Pi 3.141592…

Printing only 2 decimal digits 3.14

7

Leading Blanks for Numbers

• There is no Java library mechanism to put
leading blanks on digit strings to achieve
right hand alignment of column of numbers

• Need to write nested conditional code:
System.out.println("Number is: " +

(n<10? " " + n :

(n<100? " " + n :

(n<1000? " " + n :

n))));

8

Wrapper Classes
• The java.lang package contains a wrapper

class that corresponds to each primitive type:
Primitive Type Wrapper Class

byte Byte

short Short

int Integer

long Long

float Float

double Double

char Character

boolean Boolean

void Void

9

Wrapper Classes

• The following declaration creates an Integer
object which is a reference to an object with the
integer value 40

Integer age = new Integer(40);

• An object of a wrapper class is used in situations
where a primitive value will not suffice

• For example, some objects serve as containers
of other objects

• Primitive values could not be stored in such
containers, but wrapper objects could be

10

Wrapper Classes

• Wrapper classes may contain static methods that

help manage the associated type

– For example, the Integer class contains a method to

convert digits stored in a String to an int value:

num = Integer.parseInt(str);

• Wrapper classes often contain useful constants

– For example, the Integer class contains MIN_VALUE

and MAX_VALUE for the smallest and largest int values

11

Autoboxing

• Autoboxing is the automatic conversion of a

primitive value to a corresponding wrapper object:

Integer obj;

int num = 42;

obj = num;

• The assignment creates the appropriate Integer

object wrapping a value of 42

• The reverse conversion (called unboxing) also

occurs automatically as needed

12

JUnit Testing

• Testing is critical to software quality

• Good test plans are difficult to specify but
also difficult to document precisely

• Good testing must be repeatable

• Good testing is tedious

• Testing is a good candidate for automation

• Some methodologies such as “Extreme
Programming” mandate daily builds and
automated unit testing

13

JUnit Testing

• In project 1, when we developed our Java code

for the QuadraticSolver class, we used the CLI

class itself as the “driver” to execute test cases

• We manually entered our test case values and

visually verified whether the response provided

was correct or not

• This testing process was labor intensive!!

• The JUnit framework helps us build a “test case”

class to automate testing of a “class under test”

14

JUnit Testing

TestCase TestSolver

QuadraticSolver

+ assertEquals()

+ setA()

…

+ toString()

+ getSolution()

+ test2RealRoots()

. . .

“Class Under Test”

TestSolver “Driver Class”“junit.framework.TestCase Class”

extends

depends on

15

JUnit Testing

• Useful method inherited from TestCase class:
assertEquals(Object expected, Object actual)

assertEquals(“expected”, cut.toString());

• The assertEquals method flags discrepancies

between the “expected” value and the result

returned by the “class under test” method()

• assertEquals method automatically displays

the difference between the “expected value”

and the actual return value received

16

JUnit Testing

• Other useful assert… methods

assertEquals(double expected_value,

double actual_value,

double threshold_value)

• Automatically compares absolute difference

between first two parameters with a threshold

assertEquals(4.3, cut.getDbl(), 0.1);

17

JUnit Testing

• Useful assert… methods for boolean data type

assertTrue(boolean actual_value)

• Automatically expects returned value is true

assertTrue(cut.getBoolean());

assertFalse(boolean actual_value)

• Automatically expects returned value is false

assertFalse(cut.getBoolean());

18

JUnit Test for QuadraticSolver
import junit.framework.TestCase;

public class TestSolver extends TestCase {

private QuadraticSolver cut;

public TestSolver()

{

// nothing needed here

}

// First of six test case methods for the QuadraticSolver class

public void test2RealRoots()

{

assertEquals("Solving: 1x\u00b2 + 0x -1 = 0", QuadraticSolver.getEquation(1, 0, -1));

assertEquals("Root 1 is 1.0\nRoot 2 is -1.0", QuadraticSolver.getSolution(1, 0, -1));

}

}

19

JUnit Testing

• Test Case Execution

1 test failed:

TestSolver

test2RealRoots

test2ImaginaryRoots

testOnly1Root

testLinear

testNoSolution

testAnySolution

File: C:\Documents and Settings\bobw\My
Documents\bobw\public_html\CS110\Project1\JUnitSolutio
n\TestSolver.java [line: 48]

Failure: expected:<......> but was:<...1...>
(I removed part of “should be” string constant to create error)

20

JUnit Testing

• The Java code in the TestCase class(es)

precisely documents the test cases

• It allows them to be run automatically

• It allows people other than the test designer

to run them without knowing the details

• It prevents oversights in identification of any

discrepancies in the results

