
1

Classes, Encapsulation, Methods

and Constructors

• Class definitions

• Scope of Data

– Instance data

– Local data

• The this Reference

• Encapsulation and Java modifiers

• Reading for this Lecture: L&L, 4.1-4.5, &

App E

2

Writing Classes

• True object-oriented programming is based

on classes that represent objects with well-

defined attributes and functionality

• The programs we’ve written in previous

examples have used classes defined in the

Java standard class library

• Now we will begin to design programs that

rely on classes that we write ourselves

3

Classes and Objects

• An object has state and behavior

• Consider a six-sided die (singular of dice)

– It’s state can be defined as the face showing

– It’s primary behavior is that it can be rolled

• We can represent a die in software by
designing a class called Die that models this

state and behavior

– The class serves as the blueprint for a die object

• We can then instantiate as many die objects

as we need for any particular program

4

Classes

• A class has a name and can contain data

declarations and/or method declarations

• A UML class diagram shows it as follows:

Data declarations

Method declarations

Class Name Die

- faceValue: integer

+ Die()

+ roll() : integer

+ toString()

5

Classes

• The values of the attributes define the state of
any object created from the class

• The functionality of the methods define the
behaviors of any object created from the class

• For our Die class, an integer represents the
current value showing on the face

• One of the methods would allow us to “roll” the
die by setting its face value to a random value
between one and six

6

Constructors

• A constructor is a special method that is used to

set up an object when it is initially created

• A constructor has the same name as the class

with no return type

• The Die constructor is used to set the initial face

value of each new die object to one

 Die myDie = new Die();

• We examine constructors in more detail later

Class

Name

Constructor

Name

7

The toString Method

• All classes that represent objects should
define a toString method

• The toString method returns a string that

represents the object in some way

• It is called automatically when a reference

to an object is concatenated to a string or
when it is passed to the println method

String s = “My die shows: ” + myDie;

System.out.println(myDie);

8

Data Scope

• The scope of data is the area in a program in which

that data can be referenced (used)

• Data declared at the class level can be referenced

by code in all methods defined in that class

• Instance data is declared at the class level and it

exists for as long as the object exists

• Data declared within a method is called local data

• Data declared within a method can be used only

within that method and exists only for as long as

that method is executing

Data Scope

• Instance and local data
public class Die

{

 private int faceValue;

 public Die ()

 {

 int value = 1;

 faceValue = value;

 }

}

Local

scope

for

value

Class

level

scope

for

faceValue

10

Instance Data
• The faceValue variable in the Die class is

called instance data because each instance
(object) that is created has its own version of it

• A class declares the type of the data, but it
does not reserve any memory space for it

• Every time a new Die object is created, a new
faceValue variable is created as well

• The objects of a class share the code in the
method definitions, but each object has its own
data space in memory for instance data

• The instance data goes out of scope when the
last reference to the object is set to null

11

Instance Data

• We can depict the two Die objects from
the RollingDice program as follows:

die1 5 faceValue

die2 2 faceValue

Each object maintains its own faceValue

variable, and thus its own state

Local Data

• Any variable defined inside the curly braces

of a method (or inside any block statement,

such as if/else clauses or bodies of loops):
 public String toString()

 {

 String result = “” + faceValue;

 return result;

 }

• The variable named result is accessible

only inside this toString() method

12

13

The this Reference
• The this reference allows an object to refer to itself

• Inside the method, the object reference variable

used to call it is not available (not in local scope)

• The this reference used inside a method refers to

the object in which the method is being executed

• Suppose this is used in the Die class toString()

method as follows:

return “” + this.faceValue; // return string

• In these two invocations, this refers to and returns:

die1.toString()  5

die2.toString()  2

14

The this Reference

• The this reference can be used to distinguish

the instance variable names of an object from

local method parameters with the same names

• The Account class and its constructor can be

written as shown on either of the next two slides

• Without the this reference, we need to invent

and use two different names that are synonyms

• The this reference allows us to use the same

name for instance data and a local variable or

parameter in a method and resolves ambiguity

Without the this Reference

15

public class Die

{

 private int faceValue;

 public Die (int value)

 {

 faceValue = value;

 }

}

The local variables

have similar but not

identical names

The instance variables

have meaningful names

• A modified Die class could be written as follows:

With the this Reference

16

public class Die

{

 private int faceValue

 public Die (int faceValue)

 {

 this.faceValue = faceValue;

 }

}

The presence of
this refers to the

instance variable

The absence of
this refers to the

local variable

• The preferred method for writing it so we don’t

need to invent synonyms is as follows:

17

Encapsulation

• We can take one of two views of an object:

– internal - the details of the variables and methods of

the class that defines it

– external - the services that an object provides and

how the object interacts with the rest of the system

• From the external viewpoint, an object is an

encapsulated entity providing a set of specific

services

• These services define the interface to the object

18

Encapsulation

• An object can be thought of as a black box -- its

inner workings are encapsulated or hidden from

the client

• The client invokes the interface methods of the

object, which manages the instance data

Methods

Data

Client

19

Visibility Modifiers

• In Java, we accomplish encapsulation through

the appropriate use of visibility modifiers

• Members of a class that are declared with public

visibility can be referenced anywhere

• Members of a class that are declared with

private visibility can be referenced only within

that class

• Members declared without a visibility modifier

have default visibility and can be referenced by

any class in the same package

20

Visibility Modifiers

• Public variables violate the spirit of encapsulation
because they allow the client to “reach in” and
modify the object’s internal values directly

• Therefore, instance variables should not be
declared with public visibility

• It is acceptable to give a constant public visibility,
which allows it to be used outside of the class

• Public constants do not violate encapsulation
because, although the client can access it, its
value cannot be changed

21

Visibility Modifiers

• Methods that provide the object's services are

declared with public visibility so that they can be

invoked by clients

• Public methods are also called service methods

• A method created simply to assist a service

method is called a support or helper method

• Since a support method is not intended to be

called by a client, it should be declared with

private - not with public visibility

22

Visibility Modifiers - Summary

public private

Variables

Methods
Provide services

to clients

Support other

methods in the

class

Enforce

encapsulation

Violate

encapsulation

