Classes, Encapsulation, Methods
and Constructors

Class definitions
Scope of Data

— Instance data
— Local data

The this Reference

Encapsulation and Java modifiers

Reading for this Lecture: L&L, 4.1-4.5, &
App E

Writing Classes

* True object-oriented programming is based
on classes that represent objects with well-
defined attributes and functionality

* The programs we've written in previous
examples have used classes defined Iin the
Java standard class library

* Now we will begin to design programs that
rely on classes that we write ourselves

Classes and Objects

An object has state and behavior

Consider a six-sided die (singular of dice)
— It's state can be defined as the face showing
— It's primary behavior is that it can be rolled

We can represent a die in software by
designing a class called Die that models this

state and behavior
— The class serves as the blueprint for a die object

We can then instantiate as many die objects
as we need for any particular program 3

Classes

A class has a name and can contain data
declarations and/or method declarations

A UML class diagram shows it as follows:

Die < Class Name
- faceValue: integer)
< Data declarations
+ Die() .
+ roll() : integer < Method declarations

+ toString()

Classes

The values of the attributes define the state of
any object created from the class

The functionality of the methods define the
behaviors of any object created from the class

For our Die class, an integer represents the
current value showing on the face

One of the methods would allow us to “roll” the
die by setting its face value to a random value
between one and Six

Constructors

A constructor Is a special method that is used to
set up an object when it is initially created

A constructor has the same name as the class
with no return type

The Die constructor Is used to set the initial face
value of each new die object to one

Die myDie = new Die()
Class Constructor
Name Name

We examine constructors in more detalil later

The toString Method

 All classes that represent objects should
define a toString method

 The toString method returns a string that
represents the object in some way

* |t Is called automatically when a reference
to an object Is concatenated to a string or
when it Is passed to the print1ln method

String s = "My die shows: ” + myDie;

System.out.println (myDie) ;

v

Data Scope

The scope of data Is the area in a program in which
that data can be referenced (used)

Data declared within a met
Data declared within a met

Data declared at the class level can be referenced
oy code in all methods defined in that class

nstance data is declared at the class level and it

exists for as long as the object exists

nod is called local data

nod can be used only

within that method and exists only for as long as

that method is executing

Data Scope

e |nstance and local data

public class Die

{

private int faceValue;

public Die ()
{ Local
int value = 1; Scope

faceValue = value; for
value

Class
level
scope

for
faceValue

Instance Data

The faceValue variable in the Die class iIs

called instance data because each instance
(object) that is created has its own version of it

A class declares the type of the data, but it
does not reserve any memory space for it

Every time a new Die object is created, a new
faceValue variable is created as well

The objects of a class share the code in the
method definitions, but each object has its own
data space in memory for instance data

The instance data goes out of scope when the
last reference to the object is set to null

10

Instance Data

* We can depict the two Die objects from
the RollingDice program as follows:

diel > [faceValue 5 }

die2 —— [faceValue 2 }

Each object maintains its own facevalue
variable, and thus its own state

11

L ocal Data

* Any variable defined inside the curly braces
of a method (or inside any block statement,

such as If/else clauses or bodies of loops):
public String toString/()

{
String result = % + faceValue;

return result;

}

 The variable named result IS accessible
only inside this toString () method

12

The this Reference

The this reference allows an object to refer to itself
Inside the method, the object reference variable
used to call it is not available (not in local scope)

The this reference used inside a method refers to
the object in which the method is being executed

Suppose this Is used in the Die class toString ()
method as follows:

return “ + this.faceValue; // return string
In these two Invocations, this refers to and returns:
diel.toString() =2 5

die2.toString() =2 2
13

The this Reference

The this reference can be used to distinguish
the instance variable names of an object from
local method parameters with the same names
The Account class and its constructor can be
written as shown on either of the next two slides

Without the this reference, we need to invent
and use two different names that are synonyms

The this reference allows us to use the same

name for instance data and a local variable or
parameter in a method and resolves ambiguity

14

Without the this Reference

A modified Die class could be written as follows:

public class Die

{

private int faceValue;

public Die (int wvalue)

{

faceValue

value;

The instance variables
have meaningful names

The local variables
have similar but not
identical names

15

With the this Reference

* The preferred method for writing it so we don't
need to invent synonyms is as follows:

public class Die
{ The presence of

this refers to the

private int faceValue : :
Instance variable

public Die (int faceValue)

{

this.faceValue = faceValue; The absence of

} this refers to the
} local variable

16

Encapsulation

« We can take one of two views of an object:

— Internal - the detalls of the variables and methods of
the class that defines it

— external - the services that an object provides and
how the object interacts with the rest of the system

* From the external viewpoint, an object is an
encapsulated entity providing a set of specific
services

* These services define the interface to the object

17

Encapsulation

* An object can be thought of as a black box -- its

iInner workings are encapsulated or hidden from
the client

* The client invokes the interface methods of the
object, which manages the instance data

18

Visibility Modifiers

In Java, we accomplish encapsulation through
the appropriate use of visibility modifiers

Members of a class that are declared with public
visibility can be referenced anywhere

Members of a class that are declared with
private visibility can be referenced only within
that class

Members declared without a visibility modifier
have default visibility and can be referenced by
any class in the same package

19

Visibility Modifiers

Public variables violate the spirit of encapsulation
because they allow the client to “reach in” and
modify the object’s internal values directly

Therefore, instance variables should not be
declared with public visibility

It is acceptable to give a constant public visibility,
which allows it to be used outside of the class

Public constants do not violate encapsulation
because, although the client can access It, its
value cannot be changed

20

Visibility Modifiers

Methods that provide the object's services are
declared with public visibility so that they can be
iInvoked by clients

Public methods are also called service methods

A method created simply to assist a service
method is called a support or helper method

Since a support method is not intended to be
called by a client, it should be declared with
private - not with public visibility

21

Visibility Modifiers - Summary

Variables

Methods

public

private

Violate
encapsulation

Enforce
encapsulation

Provide services
to clients

Support other
methods in the
class

22

