
1

Classes, Encapsulation, Methods

and Constructors (Continued)

• Class definitions

• Instance data

• Encapsulation and Java modifiers

• Method declaration and parameter passing

• Constructors

• Method Overloading

• Reading for this lecture:L&L, 4.1-4.5 & App E

2

Method Declarations

• A method declaration specifies the code that will

be executed when the method is invoked (called)

• When a method is invoked, the flow of control

jumps to the method and executes its code

• When complete, the flow returns to the place

where the method was called and continues

• The invocation may or may not return a value,

depending on how the method is defined

3

myMethod();

myMethod compute

Method Control Flow
• If the called method is in the same class,

only the method name is needed

4

doIt

helpMe

helpMe();

obj.doIt();

main

Method Control Flow

• The called method is often part of another
class or object

5

Method Header

• A method declaration begins with a method header

char calc (int num1, int num2, String message)

method
name

return
type

parameter list

The parameter list specifies the type
and name of each parameter

The name of a parameter in the method
declaration is called a formal parameter

6

Method Body

• The method header is followed by the method body

char calc (int num1, int num2, String message)

{

 int sum = num1 + num2;

 char result = message.charAt (sum);

 return result;

}

The return expression
must be consistent with
the return type

sum and result

are local data

They are created
each time the
method is called, and
are destroyed when
it finishes executing

7

Local Data

• Local variables can be declared inside a method

• The formal parameters of a method are also

local variables when the method is invoked

• When the method finishes, all local variables are

destroyed (including the formal parameters)

• Keep in mind that instance variables, declared at

the class/object level, exist for as long as the

object exists

8

The return Statement

• The return type of a method indicates the type of

value that the method sends back to the caller

• A method that does not return a value has a

void return type

• A return statement specifies the value that will

be returned upon completion of the method code

return expression;

• Its expression must conform to the return type

9

Parameters
• When a method is called, the actual parameters

in the call are copied into the formal parameters
in the method header

char calc (int num1, int num2, String message)

{

 int sum = num1 + num2;

 char result = message.charAt (sum);

 return result;

}

ch = obj.calc (25, count, "Hello");

10

Objects as Parameters
• Another important issue related to method

design involves parameter passing

• Parameters in a Java method are passed by
value

• A copy of the actual parameter (the value passed
in) is stored into the formal parameter (in the
method header)

• Therefore passing parameters is similar to an
assignment statement

• When an object is passed to a method, the
actual parameter and the formal parameter
become aliases of each other

11

Passing Objects to Methods

• What a method does with a parameter may or
may not have a permanent effect (outside the
method)

• See ParameterTester.java (page 333-334)

• See ParameterModifier.java (page 335)

• See Num.java (page 336)

• Note the difference between changing the
internal state of an object versus changing the
value of a reference to point to a different object

../examples/chap06/ParameterTester.java
../examples/chap06/ParameterModifier.java
../examples/chap06/Num.java

12

Method Overloading

• Method overloading is the process of giving a

single method name multiple definitions

• If a method is overloaded, the method name is

not sufficient to determine which method is being

called

• The signature of each overloaded method must

be unique

• The signature includes the number, type, and

order of the parameters

13

Method Overloading

• The compiler determines which method is being

invoked by analyzing the parameters

float tryMe(int x)

{

 return x + .375;

}

float tryMe(int x, float y)

{

 return x*y;

}

result = tryMe(25, 4.32)

Invocation

14

Method Overloading

• The println method is overloaded:

 println (String s)

 println (int i)

 println (double d)

 and so on...

• The following lines invoke different versions of
the println method:

 System.out.println ("The total is:");

 System.out.println (3);

15

Method Overloading

• The return type of the method is not part

of the signature

• Overloaded methods cannot differ only

by their return type

• Constructors can be overloaded and

often are

• Overloaded constructors provide

multiple ways to initialize a new object

16

Accessors and Mutators

• A class usually provides methods to indirectly

access and modify the private data values

• An accessor method returns the current value of a

variable

• A mutator method changes the value of a variable

• The names of accessor and mutator methods take
the form getX and setX, respectively, where X is

the name of the value

• They are sometimes called “getters” and “setters”

17

Mutator Restrictions

• The use of mutators gives the class
designer the ability to restrict a client’s
options to modify an object’s state

• A mutator is often designed so that the
values of variables can be set only within
particular limits

• For example, the setFaceValue mutator
of the Die class should restrict the value
to the valid range (1 to MAX)

