
1

More on Arrays

• Arrays of objects

• Command line arguments

• The ArrayList class

• Javadoc

• Review Lecture 8 notes and L&L 7.1 – 7.2

• Reading for this lecture: L&L 7.3 – 7.7, App I

2

Arrays of Objects

• The elements of an array can be object references

• The following declaration reserves space to store 5
references to String objects

String[] words = new String[5];

• It does NOT create the String objects themselves

• Initially an array of objects holds null references

• Each object stored in an element of an array must

be instantiated separately

3

Arrays of Objects
• The words array when initially declared:

words -

-

-

-

-

• A reference to words.length is OK (= 5)

• However, the following reference will throw a
NullPointerException:

System.out.println(words[0].length());

4

Arrays of Objects

• To create some String objects and store

them in elements of the array:

“friendship” words

-

-

“loyalty”

“honor”

words[0] = new String(“friendship”);

words[1] = “loyalty”;

words[2] = “honor”;

5

Arrays of Objects

• String objects can be created using literals

• The following declaration creates an array
object called verbs with a length of 4 and

fills it with references to four String objects

created using string literals

String[] verbs = {"play", "work", "eat", "sleep"};

6

Arrays of Objects

• To use one of the methods of an object element of an

array:

verbs[2].equals(“eat”); // true

• To pass one of the object elements of an array as a

parameter to a method:

“eat”.equals(verbs[2]); // true

• To return an element of an array:

public String methodName(String [] verbs)

{

 return verbs[2]; // “eat”

}

7

Command-Line Arguments
• Your program’s main method is defined as:

public static void main(String [] args)

• The signature of the main method indicates that it

takes an array of String objects as a parameter

• These values come from command-line arguments

that are provided when the interpreter is invoked

• In Dr Java interactions pane, this invocation of the
JVM passes three String objects (or tokens) as

arguments to the main method of StateEval:

> java StateEval pennsylvania texas arizona

Command Line “Tokens”

8

Command Line Arguments

• These strings are stored at indexes 0-2
in the array args for the main method

• The array args will contain:

• Code in main can print the arguments:
for (String arg : args)

 System.out.println(arg);

“pennsylvania” args

“texas”

“arizona”

9

The ArrayList Class
• The ArrayList class is in java.util package

• Instantiating an empty ArrayList

 ArrayList<String> myList =

 new ArrayList<String>();

• Like an array:

– ArrayList can store a list of object references

– You can access each one using a numeric index

• Unlike an array:

– ArrayList object grows and shrinks as needed

– You don’t use [] syntax with an ArrayList object

– Cannot store primitive types (Use Wrapper classes)

10

The ArrayList Class
• The ArrayList class is available in the
java.util package

• Instantiating an empty ArrayList:

 ArrayList<String> myList =

 new ArrayList<String>();

• An ArrayList stores references to the class
inside the < > which allows it to store objects of
that class only

• This is a part of Java’s generics capability which
you will study further in CS210

11

The ArrayList Class

• Strings are inserted with a method invocation

 boolean b = myList.add(string); // to end

 myList.add(index, string); // at index

• When an element is inserted at a specific index, the
other elements are "moved aside" to make room

• If index > myList.size(), the method throws
an IndexOutOfBounds exception

• Elements are removed with a method invocation

 String s = myList.remove(index);

• When an element is removed, the list "collapses" to
close the gap and maintain contiguous indexes

12

ArrayList Efficiency

• The ArrayList class is implemented using an

underlying array

• The array is manipulated so that indexes remain

contiguous as elements are added or removed

• If elements are added to and removed from the

end of the list, this processing is fairly efficient

• But as elements are inserted and removed from

the front or middle of the list, the remaining

elements are shifted

13

Javadoc

• Javadoc is a JDK tool that creates HTML
user documentation for your classes and
their methods

• In this case, user means a programmer who
will be writing Java code using your classes

• You can access Javadoc via the JDK CLI:
> javadoc MyClass.java

• You can access Javadoc via Dr Java menu:

Tools > Javadoc All Documents

Tools > Preview Javadoc for Current Document

14

Javadoc

• The Javadoc tool scans your source file

for specialized multi-line style comments:

/**

 * <p>HTML formatted text here</p>

 */

• Your Javadoc text is written in HTML so

that it can appear within a standardized

web page format

15

Block Tags for Classes

• At the class level, you must include these

block tags with data (each on a separate line):

/**

 * @author Your Name

 * @version Version Number or Date

 */

• You should include HTML text describing the

use of this class and perhaps give examples

16

Block Tags for Methods

• At the method level, you must include these
block tags with data (each on a separate line):
/**

 * @param HTML text for 1st parameter

 * @param HTML text for 2nd parameter

 * @return HTML text for return value

 */

• If there are no parameters or return type, you
can omit these Javadoc block tags

17

In Line Tags

• At any point in your Javadoc HTML text,
you may use In-Line Tags such as @link:
/**

 * <p>See website {@link name url}

 * for more details.</p>

 */

• In-Line tags are always included inside { }

• These { } are inside the /** and */
so the compiler does not see them

18

HTML Coding

• To the extent that time permits:

– HTML Coding for text formatting

– Questions on HTML and use in Javadoc

