More on Arrays

Arrays of objects

Command line arguments
The ArrayList class

Javadoc
Review Lecture 8 notes and L&L 7.1 - 7.2
Reading for this lecture: L&L 7.3 - 7.7, App |

Arrays of Objects

The elements of an array can be object references

The following declaration reserves space to store 5
references to String objects

String[] words = new String[d];
It does NOT create the St ring objects themselves
Initially an array of objects holds null references

Each object stored in an element of an array must
be instantiated separately

Arrays of Objects

 The words array when initially declared:

words > -

* Areference to words.length is OK (= 5)

« However, the following reference will throw a
NullPointerException:

System.out.println (words[0].length());

3

Arrays of Objects

* To create some String objects and store
them In elements of the array:

words [0] = new String(“friendship”);
words[1l] = “lovyalty”;
words[2] = “honor”;
words R - “friendship”]
=: “loyalty”]
=: “honor”]

Arrays of Objects

« String objects can be created using literals

. T
O

ne following declaration creates an array
nject called verbs with a length of 4 and

fi

Is it with references to four String objects

created using string literals

String [] verbs — { "Play" , "Work" , "eat" , "sleeP" } ;

Arrays of Objects

* To use one of the methods of an object element of an
array:
verbs[2] .equals (Yeat”); // true
« To pass one of the object elements of an array as a

parameter to a method:
“eat” .equals (verbs[2]); // true

« To return an element of an array:
public String methodName (String [] verbs)

{

return verbs[2]; // “eat”

Command-Line Arguments

Your program’s main method is defined as:
public static void main(String [] args)

The signature of the main method indicates that it
takes an array of String objects as a parameter

These values come from command-line arguments
that are provided when the interpreter is invoked

In Dr Java interactions pane, this invocation of the
JVM passes three string objects (or tokens) as

arguments to the main method of StateEval:

> java StateEval pennsylvania texas arizona

Command Line “Tokens” 7

Command Line Arguments

* These strings are stored at indexes 0-2
In the array args for the main method

* The array args will contain:

args > »| “pennsylvania”]

»| “texas”]

> “arizonaT

« Code In main can print the arguments:
for (String arg : args)
System.out.println (arqg);

The ArrayList Class

The ArrayList classisin java.util package
Instantiating an empty ArrayList

ArrayList<String> myList =
new ArrayList<String>();

Like an array:
- ArrayList can store a list of object references

— You can access each one using a numeric index
Unlike an array:

— ArrayList object grows and shrinks as needed
— You don’t use [] syntax with an ArrayList object

— Cannot store primitive types (Use Wrapper classes) °

The ArrayList Class

The ArrayList class is available in the
java.util package

Instantiating an empty ArrayList:

ArrayList<String> myList =
new ArrayList<String>();

An ArrayList stores references to the class
iInside the < > which allows it to store objects of
that class only

This is a part of Java's generics capability which
you will study further in CS210

10

The ArrayList Class

Strings are inserted with a method invocation

boolean b = mylList.add(string); // to end
myList.add (index, string); // at index

When an element is inserted at a specific index, the
other elements are "moved aside" to make room

If index >myList.size (), the method throws
an IndexOutOfBounds exception

Elements are removed with a method invocation
String s = myList.remove (1ndex) ;

When an element is removed, the list "collapses" to
close the gap and maintain contiguous indexes

ArrayList Efficiency

The ArrayList class is implemented using an
underlying array

The array iIs manipulated so that indexes remain
contiguous as elements are added or removed

If elements are added to and removed from the
end of the list, this processing is fairly efficient

But as elements are inserted and removed from
the front or middle of the list, the remaining
elements are shifted

12

Javadoc

Javadoc is a JDK tool that creates HTML
user documentation for your classes and
their methods

In this case, user means a programmer who
will be writing Java code using your classes

You can access Javadoc via the JDK CLI:
> Javadoc MyClass.java

You can access Javadoc via Dr Java menu:
Tools > Javadoc All Documents
Tools > Preview Javadoc for Current Document

13

Javadoc

* The Javadoc tool scans your source file
for specialized multi-line style comments:
/**
* <p>HTML formatted text here</p>
*/
* Your Javadoc text is written in HTML so

that it can appear within a standardized
web page format

14

Block Tags for Classes

* At the class level, you must include these
block tags with data (each on a separate line):
/**
* (@author Your Name
* (@dversion Version Number or Date
*/
* You should include HTML text describing the
use of this class and perhaps give examples

15

Block Tags for Methods

» At the method level, you must include these
block tags with data (each on a separate line):
/**
* (@param HTML text for 1st parameter
* (@param HTML text for 2nd parameter
* (@return HTML text for return value
*/
* If there are no parameters or return type, you
can omit these Javadoc block tags

16

In Line Tags

« At any point in your Javadoc HTML text,
you may use In-Line Tags such as @link:

/**
* <p>See website {(@link name url}
* for more details.</p>

*/
 In-Line tags are always included inside { }

* These { } areinsidethe /** and */
so the compiler does not see them

17

HTML Coding

* To the extent that time permits:
— HTML Coding for text formatting
— Questions on HTML and use in Javadoc

18

