
1

Object Oriented Design and UML

• Software Development Activities

• Object Oriented Design

• Unified Modeling Language (UML)

• Reading for this Lecture: L&L 6.1 – 6.3

2

Software Development

• Software involves four basic activities:

1. Establishing the requirements

2. Creating a design

3. Implementing the code

4. Testing the implementation

• These activities are not strictly linear –
they overlap and interact

• We’ve already done a lot with #3 and #4

• Now, we’ll concentrate on #1 and #2

3

Requirements

• Software requirements specify the tasks that a

program must accomplish

– what to do, not how to do it

• Often an initial set of requirements is provided,

but they should be critiqued and expanded

• It is difficult to establish and document detailed,

unambiguous, and complete requirements

• Careful attention to the requirements can save

significant time and expense in the overall project

4

Design

• A software design specifies how a program will
accomplish its requirements

• That is, a software design determines:
– how the solution can be broken down into

manageable pieces

– what each piece will do

• An object-oriented design determines which
classes and objects are needed and specifies
how they will interact

• Low level design details include how individual
methods will accomplish their tasks

5

Object-Oriented Design

• Design Methodology / Process

– Analyze / decompose the requirements

– Determine the classes required for a program

– Define the relationships among classes

• Tool: Unified Modeling Language (UML)

– Use Case Diagram

– Class Diagram

– Interaction Diagram

6

Identifying Classes and Objects

• The core activity of object-oriented design is

determining the actors, classes, and objects that

represent the problem and its solution

• The classes may be part of a class library, reused

from a previous project, or newly written

• One way to identify potential classes is to identify

the objects discussed in the requirements

• Objects are generally nouns, and the services

that an object provides are generally verbs

7

Identifying Classes and Objects

• A partial requirements document:
The user must be allowed to specify each product by

its primary characteristics, including its name and

product number. If the bar code does not match the

product, then an error should be generated to the

message window and entered into the error log. The

summary report of all transactions must be structured

as specified in section 7.A.

Of course, not all nouns will correspond to

an actor, class or object in the final solution

8

Identifying Classes and Objects

• A class represents a group (a “classification”) of

objects with the same attributes and behaviors

• Generally, classes that represent objects should

be given names that are singular nouns

• Examples: Coin, Student, Message

• A class represents the concept of one such object

• We are free to instantiate as many “instances” of

each object as needed

• Good selection of object names for the instances

can be helpful to understanding

9

Identifying Classes and Objects
• Sometimes it is challenging to decide whether

something should be represented as a class

• For example, should an employee's address

be represented as a set of instance variables
or as an Address object

• The more you examine the problem and its

details the more clear these issues become

• When a class becomes too complex, it often

should be decomposed into multiple smaller

classes to distribute the responsibilities

10

Identifying Classes and Objects

• We want to define classes with the proper

amount of detail

• For example, it may be unnecessary to create

separate classes for each type of appliance in a

house

• It may be sufficient to define a more general
Appliance class with appropriate instance data

• It all depends on the details of the problem being

solved

11

Identifying Classes and Objects

• Part of identifying the classes we need is the
process of assigning responsibilities to each
class

• Every activity that a program must accomplish
must be represented by one or more methods in
one or more classes

• We generally use verbs for the names of
methods

• In early stages it is not necessary to determine
every method of every class – begin with
primary responsibilities and evolve the design

12

Unified Modeling Language (UML)

• UML is a graphical tool to visualize and

analyze the requirements and do design of

an object-oriented solution to a problem

• Three basic types of diagrams:

– Use Case Diagram

– Class Diagram

– Interaction Diagram

• A good reference is UML Distilled, 3rd Ed.,

Martin Fowler, Addison-Wesley/Pearson

13

Unified Modeling Language (UML)

• Advantage of UML – It is graphical

– Allows you to visualize the problem / solution

– Organizes your detailed information

• Disadvantage of UML – It is graphical

– Can be done with pencil and paper - tedious

– We have UMLPAD which is a simple design

tool to aid in drawing the diagrams

– Commercial UML S/W tools may be expensive!

• Example: Rational ROSE (IBM acquired Rational)

14

Use Case Diagrams

• Typically the first diagram(s) drawn

• Helpful for visualizing the requirements

• Icons on the Use Case Diagram

– Actors: Users or other external systems

– Objects: Potential classes in the solution

– Scenarios: Sequences of interactions
between Actors and Objects that are typical
for the solution to the problem (Both success
cases and error cases should be included)

15

Example: Use Case Diagram

• Actors: Sales person, Customer, Bartender

• Objects: Products, Cash, Cash Register,

Credit Card, Card Swipe Machine, Bank

• Scenarios involving Actors and Objects:

– Customer listens to sales pitch but doesn’t buy

– Customer buys product with cash

– Customer buys product with credit card

• Success scenario: Bank accepts the card

• Error scenario: Bank says card is “maxed out”

16

Example: Use Case Diagram

“No Sale”

Buy with Cash

Buy On Credit

Customer

Sales Person

Cry over lost

commission

Bartender

Process

Cash Sale

Cash

Register

Credit Card
Bank

Process

Credit SaleCash

Card Swipe

Machine

Stiff Drink

Product

<<includes>>

17

Example: Scenario

• Process Credit Sale

– Swipe Card

– Enter Amount of Sale

– Wait for Bank Response

– Success Variation (Bank accepts charge)
• Record authorization number

• Get customer signature

• Give customer product(s) and receipt

– Error Variation (Card maxed out)
• Inform Customer that card was rejected

• <<include>> Cry over Lost Commission

18

Class Diagrams

• Classify the Objects in the Use Cases

• Define name of each class

• Define each class’s attributes

– Constants

– Variables

• Define each class’s behaviors

– Methods

• Show relationships between classes

– Depends on, Inherits, etc.

19

Example: Class Diagram

Credit Card

- myCardData : CardData

+ read() : CardData

Bank

- name : String

- address : String

- accounts [] : AcctData

+ processCharge (

thisCardData : CardData

amt : double,

storeName : String,

storeBank : Bank,

storeAcctNumber : int

) : boolean

CardData

- cardType : enum {Visa, …}

- myBank : Bank

- myAcctNumber : int

+ getCardType() : enum

+ getBank() : Bank

+ getAcctNumber() : int

AcctData

-acctLimit : double

-acctBalance: double

…

20

Interaction Diagrams

• Shows the time relationship of the events

in a scenario between actors and objects

– UML Sequence Diagram

– Sometimes called a “ladder diagram”

• A vertical line represents an actor or object

• A horizontal line represents an interaction

– E.G. a call to a method of another object

• Progress of time is shown down the page

21

Example: Interaction Diagram
Process Credit Sale

Sales

Person Credit Card
Card Swipe

Machine Bank

read()

processCharge(…)
enterAmt(…)

swipeCard()

return boolean

return CardData

Time

readResponse()

return “OK”

22

Introduction to Project 3

• In Project 3, you will write a class that

encapsulates the three integer coefficients

of a linear equation:

ax + by = c

• The methods are defined in the assignment

• The class implements the interface

Comparable<T> (we’ll cover implementing

interfaces shortly)

23

<<interface>>

java.lang.Comparable<Equation>

Equation

java.util.Arrays

+ sort (array : Object []) : void

EquationTest

Your ApplicationClass

Provided You write

You write
Class Library

+ main (args : String []) : void

+ compareTo (that : T) : int

Equation Class UML Diagram

Equation implements Comparable<Equation>
+ THRESHHOLD : double // threshold for comparisons of double values

- a : int // coefficient of the variable x

- b : int // coefficient of the variable y

- c : int // constant

+ Equation(a : int, b : int, c : int) // constructor

+ toString() : String // return a String representing the equation

+ slope() : double // return the slope of the line

+ intercept() : double // return the y-axis intercept of the line

+ compareTo(that : Equation) : int // compare values of equations

// solving methods for pairs of equations:

+ solveForXWith(that : Equation) : double // solve for X

+ solveForYWith(that : Equation) : double // solve for Y

+ verifySolution(x : double, y : double) : boolean // verify correct

