
1

Object Oriented Design and UML

• Class Relationships

– Dependency

– Aggregation

– Interfaces

– Inheritance

• Interfaces

• Reading for this Lecture: L&L 6.4 – 6.5

2

Class Relationships

• Classes in a software system can have various

types of relationships to each other

• Three of the most common relationships:

– Dependency: A uses B

– Aggregation: A has-a B (as in B is an integral part of A)

– Interface: A is B (adjective) or A is-a B (noun)

– Inheritance: A is-a B

• We cover the first three now

• We cover inheritance later

3

Dependency

• A dependency exists when one class relies on

another in some way, usually by invoking the

methods of the other

• We've seen dependencies in previous examples

and in Projects 1 and 2

• We don't want numerous or complex dependencies

among classes

• Nor do we want complex classes that don't depend

on others

• A good design strikes the right balance

4

Dependency

• Some dependencies occur between objects of

the same class

• A method of the class may accept an object of

the same class as a parameter

• For example, the equals method of the

String class takes as a parameter another

String object

boolean b = str1.equals(str2);

• This drives home the idea that the service is

being requested from a particular object

5

Aggregation

• An aggregate is an object that is made up of
other objects

• Therefore aggregation is a has-a relationship

– A Car has a Chassis and has an Engine

– A StudentBody has (a) Student object(s)

• In code, an aggregate object contains references
to its component objects as instance data

• The aggregate object itself is defined in part by
the objects that make it up

• This is a special kind of dependency – the
aggregate usually relies for its existence on the
component objects

6

Aggregation

• In the following example, a StudentBody object is
composed of integral Student objects which then
depend on Address objects

• A StudentBody has one or more Student(s)

• See StudentBody.java (page 312)

• See Student.java (page 313)

• See Address.java (page 314)

• An aggregation association is shown in a UML
class diagram using an open diamond at the
aggregate end (Note difference from text diagram)

../examples/chap06/StudentBody.java
../examples/chap06/Student.java
../examples/chap06/Address.java

7

Dependency/Aggregation in UML
StudentBody

+ main (args : String[]) : void

+ toString() : String

Student

- firstName : String

- lastName : String

- homeAddress : Address

- schoolAddress : Address

+ toString() : String

- streetAddress : String

- city : String

- state : String

- zipCode : long

Address Dependency shown with this symbol

Aggregation shown with this symbol

Please note differences from

L&L Textbook Figure 6.2

This is a better representation

of aggregation than the text.

Aggregation

• There are two ways to include the component

objects in an object that is an aggregation

– For one component (or a small constant number

of components), use parameters in the constructor

 public Car(Chassis c, Engine e)

 { ... }

– For a large or indefinite number of components,

define an add method to add them one at a time

 public void add(Student aStudent)

 { ... } 8

9

Interfaces

• A Java interface is a collection of constants and
abstract methods with a name that looks like a
class name, i.e. the first letter is capitalized

• An interface is used to identify a set of methods
that a class will implement

• An abstract method is a method header with a ;
and without a method body, i.e. No { . . . }

• An abstract method can be declared using the
modifier abstract, but because all methods in
an interface are abstract, it is usually left off

• Methods in an interface have public visibility by
default

10

Interfaces

public interface Doable

{

 // Doable constants

 public static final boolean DONE = true;

 public static final boolean NOT_DONE = false;

 // Doable required methods (signatures only)

 public void doThis();

 public int doThat();

}

interface is a reserved word

None of the methods in

an interface are given

a definition {body}

A semicolon immediately

follows each method header

11

Interfaces
• An interface name can be either an adjective

(like …able) or a noun (like a class name)

• An interface cannot be instantiated by itself

• A class implements an interface by:

– using the Java reserved word implements

– providing an implementation for each abstract

method that is defined in the interface

• Classes that implement an interface can also

implement their own methods and they

usually do

12

Interfaces
public class CanDo implements Doable

{

 public void doThis ()

 {

 // whatever

 }

 public int doThat ()

 {

 // whatever

 }

 // etc.

}

implements is a

reserved word

Each method listed

in Doable must be

given a definition

Doable is an adjective

13

Interfaces In UML

CanDo

<<interface>> Doable

+ DONE : boolean

+ NOT_DONE : boolean

+ doThis() : void

+ doThat() : int

+ doThis() : void

+ doThat() : int

+ doNothing () : void

+ doSomething () : void

Each method listed

in Doable becomes

 a method of CanDo

CanDo can have

other methods

of its own

A “Generalization” arrow

is used for “implements”

(and also for “extends” later)

Interface box looks like

a class box with

stereotype <<interface>>

14

Interfaces
• In addition to (or instead of) abstract

methods, an interface can contain constants

• When a class implements an interface, it

gains access to all of its defined constants

15

Interfaces
• A class can implement multiple interfaces

• All interface names are listed in the
implements clause

• The class must implement all methods in
all interfaces listed in the header

class ManyThings implements

 Interface1, Interface2, ...

{

 // all methods of all interfaces

}

16

Interfaces

• The Java standard class library contains many
interface definitions that allow other classes to
treat your new class as if it were that interface

• Note: Comparable is an adjective in this case

• The Comparable interface contains one abstract
method called compareTo, which can compare
an object with another object of the same type

• We discussed the compareTo method of the
String class previously

• The String class implements Comparable,
giving us the ability to put strings in lexicographic
order

17

The Comparable Interface
• Any class can implement Comparable to provide

a mechanism for comparing objects of that type
by providing a compareTo method

• The value returned from compareTo should be
negative if obj1 is less than obj2, 0 if they are
equal, and positive if obj1 is greater than obj2

• When you design a class that implements the
Comparable interface, it should follow this intent

if (obj1.compareTo(obj2) < 0)

 System.out.println ("obj1 is ”

 + “less than obj2");

18

The Comparable Interface

• It's up to you as the programmer to determine

what makes one object less than another

• For example, you may define the compareTo

method of an Employee class to order

employees by name (alphabetically), by salary,

by employee number, or any other useful way

• The implementation of the method can be as

straightforward or as complex as needed for the

situation

19

Interfaces as “Reference Types”

• You could write a class that implements
certain methods (such as compareTo)
without formally implementing the interface
(Comparable)

• But, formally establishing the relationship
between your class and an predefined
interface allows Java to deal with an object
of your class as if it were an object of a
class corresponding to the interface name

20

Interfaces as “Reference Types”

• You can cast using the interface name in ()

• You can pass an object of CanDo class to

a method as an object of Doable “class”.

CanDo iCanDo = new CanDo();

...

Doable iAmDoable = iCanDo; // widening

doIt(iCanDo);

...

public void doIt(Doable isItReallyDoable)

{

 ... // Yes, iCanDo is Doable!

}

21

Interfaces as “Reference Types”

• When you are using an object “cast as” one of the
interfaces that it implements, you are treating this
object as if it were an object of a class defined by
the interface

• You can only access the subset of the object’s
methods that are defined in the interface

• CanDo methods, such as doNothing(), are
not accessible when a CanDo object is cast as a
Doable object because they are not defined in
the Doable interface

22

Interfaces as “Reference Types”

CanDo iCanDo = new CanDo();

iCanDo.doThis(); // a Doable method

iCanDo.doNothing(); // a CanDo method

// a widening conversion - no cast

Doable iAmDoable = new CanDo();

// all Doable methods are available

iAmDoable.doThis();

// CanDo method not accessible via Doable interface

// iAmDoable.doNothing(); // would be compiler error

// but it is really there - need a cast to call it

((CanDo)iAmDoable).doNothing();

