Object Oriented Design and UML

* Class Relationships
— Dependency
— Aggregation
— Interfaces
— Inheritance

* Interfaces
* Reading for this Lecture: L&L 6.4 — 6.5

Class Relationships

Classes In a software system can have various
types of relationships to each other

Three of the most common relationships:

— Dependency: A uses B

— Aggregation: A has-a B (as in B is an integral part of A)
— Interface: A is B (adjective) or A is-a B (noun)

— Inheritance: Ais-a B

We cover the first three now
We cover inheritance later

Dependency

A dependency exists when one class relies on
another in some way, usually by invoking the
methods of the other

We've seen dependencies in previous examples
and in Projects 1 and 2

We don't want numerous or complex dependencies
among classes

Nor do we want complex classes that don't depend
on others

A good design strikes the right balance

Dependency

Some dependencies occur between objects of
the same class

A method of the class may accept an object of
the same class as a parameter

For example, the equals method of the
String class takes as a parameter another
String object

boolean b = strl.equals(str2);

This drives home the idea that the service is
being requested from a particular object

Aggregation

An aggregate Is an object that is made up of
other objects

Therefore aggregation is a has-a relationship
— A Car has a Chassis and has an Engine
— A StudentBody has (a) Student object(s)

In code, an aggregate object contains references
to its component objects as instance data

The aggregate object itself is defined in part by
the objects that make it up

This is a special kind of dependency — the
aggregate usually relies for its existence on the
component objects 5

Aggregation

In the following example, a StudentBody object is
composed of integral Student objects which then
depend on Address objects

A StudentBody has one or more Student(s)
See StudentBody.java (page 312)

See Student.java (page 313)

See Address.java (page 314)

An aggregation association is shown in a UML
class diagram using an open diamond at the
aggregate end (Note difference from text diagram)

6

../examples/chap06/StudentBody.java
../examples/chap06/Student.java
../examples/chap06/Address.java

Dependency/Aggregation in UML

StudentBody Student
< > « - firstName : String
+ main (args : String[]) : void - lastName : String
/ - homeAddress : Address

- schoolAddress : Address

Aggregation shown with this symbol + toString() : String

-
-
-
-
-
-
-
-
-
-
-

W
Dependency shown with this symbol Address
- streetAddress : String
- city : String
Please note differences from - state : String
L&L Textbook Figure 6.2 - zipCode : long

This is a better representation _ _
of aggregation than the text. + toString() : String

Aggregation

* There are two ways to include the component
objects In an object that is an aggregation

— For one component (or a small constant number
of components), use parameters in the constructor

public Car (Chassis ¢, Engine e)

{ .. 1}

— For a large or indefinite number of components,
define an add method to add them one at a time

public voild add(Student aStudent)
{ } 8

Interfaces

A Java Interface Is a collection of constants and
abstract methods with a name that looks like a
class name, I.e. the first letter is capitalized

An interface Is used to identify a set of methods
that a class will implement

An abstract method i1s a method header with a ;
and without a method body,i.e.No { . . . }

An abstract method can be declared using the
modifier abstract, but because all methods In
an interface are abstract, it is usually left off

Methods in an interface have public visibility by
default

Interfaces

Interface is a reserved word

l None of the methods In
o an interface are given
public interface Doable a definition {body?}

{

// Doable constants
public static final boolean DONE = true;
public static final boolean NOT DONE = false;

// Doable required methods (signatures only)
public void doThis() ;
public int doThat () ;,\

A semicolon immediately
follows each method header

10

Interfaces
An interface name can be either an adjective

(like ...able) or a noun (like a class name)
An interface cannot be instantiated by itself

A class implements an interface by:
— using the Java reserved word implements

— providing an implementation for each abstract
method that is defined In the interface

Classes that implement an interface can also
iImplement their own methods and they
usually do

11

Interfaces

public class CanDo implements Doable

{ '\ Doable is an adjective
'\

public void doThis () Implements is a
{ reserved word

// whatever
} Each method listed

> iIn Doable must be

public int doThat () given a definition
{

// whatever

} v

// etc.

12

Interfaces In UML

<<interface>> Doable .. Interface box looks like
+ DONE : boolean - aclass box Wlfth
+ NOT_DONE : boolean stereotype <<interface>>

+ doThis() : void
+ doThat() : int

A “Generalization” arrow
is used for “implements”
(and also for “extends” later)

CanDo

+ doThis() : void Each method listed
+ doThat() : int } in Doable becomes
a method of CanDo

+ doNothing () : void CanDo can have
+ doSomething () : void other methods

of its own

13

Interfaces

 In addition to (or instead of) abstract
methods, an interface can contain constants

* When a class implements an interface, it
gains access to all of its defined constants

14

Interfaces
* A class can implement multiple interfaces

e All Interface names are listed In the
implements clause

* The class must implement all methods in
all interfaces listed in the header

class ManyThings implements
Interfacel, Interface?2,

// all methods of all interfaces

15

Interfaces

The Java standard class library contains many
interface definitions that allow other classes to
treat your new class as if it were that interface

Note: Comparable is an adjective In this case

The Comparable Interface contains one abstract
method called compareTo, which can compare
an object with another object of the same type

We discussed the compareTo method of the
String class previously

The string class implements Comparable,
giving us the ability to put strings in lexicographic
order

16

The Comparable Interface

* Any class can implement Comparable to provide
a mechanism for comparing objects of that type
by providing a compareTo method

1f (objl.compareTo (obj2) < 0)

System.out.println ("objl 1s ”
+ Y“less than ob3j2");

* The value returned from compareTo should be
negative if obj1 Is less than obj2, 0 if they are
equal, and positive if obj1 Is greater than obj2

* When you design a class that implements the
Comparable Interface, it should follow this intent

17

The Comparable Interface

* It's up to you as the programmer to determine
what makes one object less than another

* For example, you may define the compareTo
method of an Employee class to order

employees by name (alphabetically), by salary,
by employee number, or any other useful way

« The implementation of the method can be as
straightforward or as complex as needed for the

situation

18

Interfaces as “Reference Types”

* You could write a class that implements
certain methods (such as compareTo)
without formally implementing the interface
(Comparable)

« But, formally establishing the relationship
between your class and an predefined
Interface allows Java to deal with an object
of your class as If it were an object of a
class corresponding to the interface name

19

Interfaces as “Reference Types”

You can cast using the interface name in ()

CanDo 1CanDo = new CanDo () ;

Doable iAmDoable = iCanDo; // widening

You can pass an object of CanDo class to

a method as an object of Doable “class”.
doIt (1CanDo) ;

public void dolt (Doable 1sItReallyDoable)
{

// Yes, iCanDo is Doable!

J

20

Interfaces as “Reference Types”

 When you are using an object “cast as” one of the
Interfaces that it implements, you are treating this

object as If

It were an object of a class defined by

the interface

* You can on

ly access the subset of the object’s

methods that are defined in the interface

e CanDo met
not accessi

nods, such as doNothing (), are
nle when a CanDo object is cast as a

Doable 0Dbj

ect because they are not defined in

the Doable Interface

21

Interfaces as “Reference Types”

CanDo iCanDo = new CanDo() ;
iCanDo.doThis () ; // a Doable method
iCanDo.doNothing() ; // a CanDo method

// a widening conversion - no cast
Doable iAmDoable = new CanDo() ;

// all Doable methods are available
iAmDoable.doThis () ;

// CanDo method not accessible via Doable interface
// iAmDoable.doNothing(); // would be compiler error

// but it is really there - need a cast to call it
((CanDo) iAmDoable) .doNothing () ;

22

