
1

Inheritance

• Inheritance

• Reserved word protected

• Reserved word super

• Overriding methods

• Class Hierarchies

• Reading for this lecture: L&L 8.1 – 8.5

2

Inheritance

• Inheritance allows a software developer to derive
a new class from an existing one

• The existing class is called the parent class,
superclass, or base class

• The new class is called the child class, subclass
or derived class

• As the name implies, the child inherits
characteristics of the parent

• That is, the child class inherits the methods and
data defined by the parent class

3

Inheritance

• Inheritance is based on an is-a relationship

• The child is a more specific version of the parent

• Inheritance relationships are shown in a UML
class diagram using a solid arrow with an unfilled
triangular arrowhead pointing to the parent class
(Note: Similar graphic notation as Interface)

Vehicle

Car

Solid line
instead of
dotted line

4

Inheritance

• Software reuse is a fundamental benefit of
inheritance

• By using existing software components to create
new ones, we capitalize on all the effort that
went into the design, implementation, and
testing of the existing software

• However, a programmer can tailor a derived
class as needed by adding new variables or by
“overriding” some of the inherited methods

5

Deriving Subclasses

• In Java, we use the reserved word extends to
establish an inheritance relationship

public class Car extends Vehicle

{

// class contents

}

6

The protected Modifier

• Visibility modifiers affect the way that class
members can be used in a child class

• Variables and methods declared with private
visibility cannot be referenced by name in a
child class

• They can be referenced in the child class if they
are declared with public visibility -- but public
variables violate the principle of encapsulation

• There is a third visibility modifier that helps in
inheritance situations: protected

7

The protected Modifier
• The protected modifier allows a child class to

reference a variable or method directly in the
child class

• It provides more encapsulation than public
visibility, but is not as tightly encapsulated as
private visibility

• A protected variable is visible in any class that is
a child of the class where it is defined

• A protected variable is also visible in any class
that is in the same package as the class where it
is defined (we don’t use packages in this course)

• Protected variables and methods can be shown
with a # symbol in UML class diagrams

8

Class Diagram for Words

Book
pages : int

+ pageMessage() : void

Dictionary
- definitions : int

+ definitionMessage() : void

Words

+ main (args : String[]) : void

9

The super Reference

• Constructors are not inherited even though they
have public visibility

• Yet we often want to use the parent's constructor
to set up the "parent's part" of the object

• The super reference can be used to refer to the
parent class and invoke the parent's constructor
public class Child extends Parent
{
public Child()

{
super(); // a call to Parent()
// plus whatever code we need for Child

}
}

10

The super Reference

• A child’s constructor is responsible for
calling the parent’s constructor

• The first line of a child’s constructor should
use the super reference to call the
parent’s constructor

• The super reference can also be used to
reference (with a dot .) other variables and
methods defined in the parent’s class

11

Multiple Inheritance

• Multiple inheritance allows a class to be derived
from two or more classes inheriting members of
all parents

• Collisions (such as the use of the same variable
name in two or more parents) must be resolved

• Java does not support multiple inheritance
(Some other languages such as C++ do)

• In Java, a class can have only one direct parent
• The use of interfaces in Java gives us most of

the benefits of multiple inheritance without the
problems

12

Overriding Methods

• A child class can override the definition of an
inherited method in favor of its own

• The new method must have the same signature
as the parent's method, but can have a different
body

• The class of the object used to execute an
overridden method determines which version of
the method is invoked

• In the child, the method in the parent class can
be invoked explicitly using the super reference

• If a method is declared in the parent class with
the final modifier, it cannot be overridden

13

Overriding Variables

• The concept of overriding can be applied
to data and is called shadowing variables

• Shadowing variables should be avoided
because it tends to cause unnecessarily
confusing code

14

Overloading vs. Overriding

• Overloading deals with multiple methods with the
same name in the same class that have different
signatures (different parameter lists)

• Overriding deals with two methods (one in a parent
class and one in a child class) that have the same
signature (same parameter list)

• Overloading lets you define a similar operation in
different ways (using different input parameters)

• Overriding lets you redefine a parent’s method in a
child (using the same input parameters)

15

Class Hierarchies
• A child class of one parent can be the parent of

another child, forming a class hierarchy

• Two children of the same parent are called
siblings Business

KMart Macys

ServiceBusiness

Kinkos

RetailBusiness

16

Class Hierarchies

• A child class inherits from all its ancestor
classes

• An inherited variable, constant, or method is
passed continually down the line (unless it is
declared private)

• Common features should be put as high in
the hierarchy as is reasonable

• There is no single class hierarchy that is
appropriate for all situations

17

The Object Class

• A class called Object is defined in the java.lang
package of the Java standard class library

• All classes are derived from the Object class

• If a class is not explicitly defined to be the child of
an existing class, it is assumed to be the child of
the Object class

• Therefore, the Object class is the ultimate root of
all class hierarchies

18

The Object Class
• The Object class contains a few useful

methods which are inherited by all classes
• For example, the toString method is defined

in the Object class
• The toString method in the Object class is

defined to return a string that contains the name
of the object’s class along with other information
(e.g. the address of its location in memory)
System.out.println(new Object());
java.lang.Object@952905

• Every time we define the toString method, we
are actually overriding the inherited definition

19

The Object Class

• The equals method of the Object class
returns true if the two references are aliases

• We can override equals in any class to define
equality in some more appropriate way

• As we've seen, the String class defines the
equals method to return true if the two String
objects contain the same characters

• The designers of the String class have
overridden the equals method inherited from
Object in favor of a more useful version

20

Abstract Classes
• An abstract class is a placeholder in a class

hierarchy that represents a generic concept

• An abstract class cannot be instantiated, it can
only be extended in a class hierarchy

• We use the modifier abstract on the class
header to declare a class as abstract:

public abstract class Product
{

// contents
}

21

Abstract Classes

• An abstract class often contains abstract
methods with no definitions (like an interface)

• Unlike an interface, the abstract modifier
must be applied to each abstract method

• Also, an abstract class typically contains some
non-abstract methods with their full definitions

• A class declared as abstract does not have to
contain abstract methods -- simply declaring it
as abstract makes it so

22

Abstract Classes

• The child of an abstract class must override all
abstract methods of the parent or it too will be
considered abstract

• An abstract method cannot be defined as final
or static

• The use of abstract classes is an important
element of software design – it allows us to
establish common elements in a class hierarchy
that are too generic to instantiate

	Page #1
	Page #2
	Page #3
	Page #4
	Page #5
	Page #6
	Page #7
	Page #8
	Page #9
	Page #10
	Page #11
	Page #12
	Page #13
	Page #14
	Page #15
	Page #16
	Page #17
	Page #18
	Page #19
	Page #20
	Page #21
	Page #22

