Inheritance

Inheritance

Reserved word protected

Reserved word super

Overriding methods

Class Hierarchies

Reading for this lecture: L&L 8.1 — 8.5

Inheritance

Inheritance allows a software developer to derive
a new class from an existing one

The existing class is called the parent class,
superclass, or base class

The new class iIs called the child class, subclass
or derived class

As the name implies, the child inherits
characteristics of the parent

That is, the child class inherits the methods and
data defined by the parent class

Inheritance

* |Inheritance Is based on an is-a relationship
 The child is a more specific version of the parent

 Inheritance relationships are shown in a UML
class diagram using a solid arrow with an unfilled
triangular arrowhead pointing to the parent class
(Note: Similar graphic notation as Interface)

Venhicle Solid |
olid line
Z}/ instead of
dotted line

Car

Inheritance

e Software reuse is a fundamental benefit of
Inheritance

* By using existing software components to create
new ones, we capitalize on all the effort that
went into the design, implementation, and
testing of the existing software

 However, a programmer can tailor a derived
class as needed by adding new variables or by
“overriding” some of the inherited methods

Deriving Subclasses

 |[n Java, we use the reserved word extends to
establish an inheritance relationship

public class Car extends Vehicle

1

// class contents

}

The protected Modifier

Visibility modifiers affect the way that class
members can be used in a child class

Variables and methods declared with private
visibility cannot be referenced by name in a
child class

They can be referenced in the child class if they
are declared with public visibility -- but public
variables violate the principle of encapsulation

There is a third visibility modifier that helps in
Inheritance situations: protected

The protected Modifier

The protected modifier allows a child class to

reference a variable or method directly in the
child class

It provides more encapsulation than public
visibility, but is not as tightly encapsulated as
private visibility

A protected variable is visible in any class that is
a child of the class where it is defined

A protected variable Is also visible in any class
that Is In the same package as the class where it
IS defined (we don’t use packages in this course)

Protected variables and methods can be shown
with a # symbol in UML class diagrams

Z

Class Diagram for Words

Words

+ main (args : String[]) : void

Book

pages : int

+ pageMessage() : void

AN

Dictionary

- definitions : int

+ definitionMessage() : void

The super Reference

e Constructors are not inherited even though they
have public visibility

* Yet we often want to use the parent's constructor
to set up the "parent's part" of the object

 The super reference can be used to refer to the

parent class and invoke the parent's constructor
public class Child extends Parent

{
public Child()
{
super(Q); // a call to Parent()
// plus whatever code we need for Child
by

The super Reference

* A child’s constructor Is responsible for
calling the parent’s constructor

 The first line of a child’s constructor should
use the super reference to call the

parent’'s constructor

 The super reference can also be used to

reference (with a dot .) other variables and
methods defined In the parent’s class

10

Multiple Inheritance

Multiple inheritance allows a class to be derived
from two or more classes inheriting members of
all parents

Collisions (such as the use of the same variable
name Iin two or more parents) must be resolved

Java does not support multiple inheritance
(Some other languages such as C++ do)

In Java, a class can have only one direct parent

The use of interfaces in Java gives us most of
the benefits of multiple inheritance without the
problems

11

Overriding Methods

A child class can override the definition of an
Inherited method in favor of its own

The new method must have the same signature
as the parent's method, but can have a different

body

The class of the object used to execute an
overridden method determines which version of

the met
n the c

De INVO
f a met

the fFinal moo

Ked exp
hod Is ©

nod Is invoked
nild, the method In the parent class can

Icitly using the super reference
eclared In the parent class with

Ifier, It cannot be overridden

12

Overriding Variables

* The concept of overriding can be applied
to data and Is called shadowing variables

e Shadowing variables should be avoided

because It tends to cause unnecessarily
confusing code

13

Overloading vs. Overriding

Overloading deals with multiple methods with the
same name Iin the same class that have different
sighatures (different parameter lists)

Overriding deals with two methods (one in a parent
class and one in a child class) that have the same
signature (same parameter list)

Overloading lets you C
different ways (using ©

efine a similar operation in
Ifferent input parameters)

Overriding lets you red
child (using the same |

efine a parent’s method in a
nput parameters)

14

* A child class of one parent can be the parent of

Class Hierarchies

another child, forming a class hierarchy

e Two children of the same parent are called

siblings

Business

JAN

RetallBusiness

AN

KMart

Macys

ServiceBusiness

AN

Kinkos

15

Class Hierarchies

A child class inherits from all its ancestor
classes

An inherited variable, constant, or method Is
passed continually down the line (unless it is
declared private)

Common features should be put as high Iin
the hierarchy as Is reasonable

There Is no single class hierarchy that is
appropriate for all situations

16

The Object Class

A class called Object is defined in the Java. lang
package of the Java standard class library

All classes are derived from the Object class

If a class is not explicitly defined to be the child of

an existing class, it is assumed to be the child of
the Object class

Therefore, the Object class is the ultimate root of
all class hierarchies

17

The Object Class

The Object class contains a few useful
methods which are inherited by all classes

For example, the toString method is defined
In the Object class

The toString method in the Object class is

defined to return a string that contains the name
of the object’s class along with other information
(e.g. the address of its location iIn memory)

System.out.printin(new Object());
Java. lang.Object@952905

Every time we define the toString method, we
are actually overriding the inherited definition

18

The Object Class

The equals method of the Object class
returns true If the two references are aliases

We can override equals in any class to define
equality In some more appropriate way

As we've seen, the String class defines the
equals method to return true if the two String

objects contain the same characters

The designers of the String class have
overridden the equals method inherited from
Object in favor of a more useful version

19

Abstract Classes

* An abstract class is a placeholder in a class
hierarchy that represents a generic concept

e An abstract class cannot be instantiated, it can
only be extended in a class hierarchy

e \We use the modifier abstract on the class
header to declare a class as abstract:

public abstract class Product

1

// contents

}

20

Abstract Classes

An abstract class often contains abstract
methods with no definitions (like an interface)

Unlike an interface, the abstract modifier
must be applied to each abstract method

Also, an abstract class typically contains some
non-abstract methods with their full definitions

A class declared as abstract does not have to
contain abstract methods -- simply declaring it
as abstract makes it so

21

Abstract Classes

e The child of an abstract class must override all
abstract methods of the parent or it too will be
considered abstract

 An abstract method cannot be defined as final
or static

 The use of abstract classes is an important
element of software design — it allows us to
establish common elements in a class hierarchy
that are too generic to instantiate

22

	Page #1
	Page #2
	Page #3
	Page #4
	Page #5
	Page #6
	Page #7
	Page #8
	Page #9
	Page #10
	Page #11
	Page #12
	Page #13
	Page #14
	Page #15
	Page #16
	Page #17
	Page #18
	Page #19
	Page #20
	Page #21
	Page #22

