
1

Inheritance and Polymorphism

• Inheritance (Continued)

• Polymorphism

• Polymorphism by inheritance

• Polymorphism by interfaces

• Reading for this lecture: L&L 10.1 – 10.3

2

Interface Hierarchies
• Inheritance can be applied to interfaces as

well as classes

• That is, one interface can be derived from

another interface

• The child interface inherits all abstract

methods of the parent

• A class implementing the child interface must

define all methods from both the ancestor and

child interfaces

• Note that class hierarchies and interface

hierarchies are distinct (they do not overlap)

3

Visibility Revisited

• All variables and methods of a parent class, even
private members, are inherited by its children

• As we've mentioned, private members cannot be
referenced by name in the child class

• However, private members inherited by child
classes exist and can be referenced indirectly

• Because the parent can refer to the private
member, the child can reference it indirectly using
its parent's methods

• The super reference can be used to refer to the
parent class, even if no object of the parent class
exists

4

Designing for Inheritance

• As we've discussed, taking the time to create a

good software design reaps long-term benefits

• Inheritance issues are an important part of an

object-oriented design

• Properly designed inheritance relationships can

contribute greatly to the elegance,

maintainability, and reuse of the software

• Let's summarize some of the issues regarding

inheritance that relate to a good software design

5

Inheritance Design Issues

• Every derivation should be an is-a relationship

• Think about a potential future class hierarchy

• Design classes to be reusable and flexible

• Find common characteristics of classes and

push them as high in the class hierarchy as

appropriate, i.e. “generalize” the behavior

• Override methods as appropriate to tailor or

change the functionality of a child

• Add new variables to children, but don't

redefine (shadow) inherited variables

6

Inheritance Design Issues

• Allow each class to manage its own data; use
the super reference to invoke the parent's
constructor to set up its data

• Even if there are no current uses for them,
override general methods such as toString
and equals with appropriate definitions

• Use abstract classes to represent general
concepts that lower classes have in common

• Use visibility modifiers carefully to provide
needed access without violating encapsulation

7

Restricting Inheritance

• The final modifier can be used to curtail
inheritance

• If the final modifier is applied to a method,
then that method cannot be overridden in any
descendent classes

• If the final modifier is applied to an entire
class, then that class cannot be used to derive
any children at all

– Thus, an abstract class cannot be declared as final

• These are key design decisions and establish
that a method or class must be used “as is” or
not at all

8

Polymorphism

• The term polymorphism literally means
"having many forms"

• A polymorphic reference is a variable that
can refer to different types of objects at
different points in time

• All object references in Java are potentially
polymorphic and can refer to an object of
any type compatible with its defined type

• Compatibility of class types can be based
on either Inheritance or Interfaces

9

Polymorphism

• Suppose we create the following object reference
variable (Holiday can be a class or an interface):

 Holiday day;

• Java allows this reference to point to a Holiday
object or to any object of any compatible type

• If class Christmas extends Holiday or if
class Christmas implements Holiday, a
Christmas object is a compatible type with a
Holiday object and a reference to one can be
stored in the reference variable day:

 day = new Christmas();

10

References and Inheritance
• An object reference can refer to an object of its

class or to an object of any class related to it by

inheritance

• For example, if the Christmas class extends

the Holiday class, then a Holiday reference

could be used to point to a Christmas object

Holiday day;

day = new Christmas();

Holiday

Christmas

11

References and Inheritance

• Assigning a child object to a parent reference
is considered to be a widening conversion,
and can be performed by simple assignment

• The widening conversion is the most useful

• Assigning a parent object to a child reference
can be done, but it is considered a narrowing
conversion and two rules/guidelines apply:

– A narrowing conversion must be done with a cast

– A narrowing conversion should only be used to
restore an object back to its original class (back to
what it was “born as” with the new operator)

12

Polymorphism via Inheritance

• It is the type of the object being referenced, not the
reference type, that determines which method is
invoked

• If the Holiday class has a celebrate method,
and the Christmas class overrides it, consider the
following invocation:

day.celebrate();

• If day refers to a Holiday object, it invokes the
Holiday version of celebrate()

• If day refers to a Christmas object, it invokes the
Christmas version of celebrate()

13

References and Interfaces
• An object reference can refer to an object of its

class or to an object of any class related to it by

an interface

• For example, if a Christmas class implements

Holiday, then a Holiday reference could be

used to point to a Christmas object

Holiday day;

day = new Christmas();

Holiday

Christmas

14

Polymorphism via Interfaces

• An interface name can be used as the type of an

object reference variable

Speaker current;

• The current reference can be used to point to

any object of any class that implements the
Speaker interface

• The version of speak that the following line

invokes depends on the type of object that
current is referencing

current.speak();

15

Polymorphism via Interfaces

• Suppose two classes, Philosopher and Dog,
both implement the Speaker interface, but each
provides a distinct version of the speak method

• In the following code, the first call to speak
invokes the Philosopher method and the
second invokes the Dog method:

 Speaker guest = new Philosopher();

 guest.speak(); // To be or not to be

 guest = new Dog();

 guest.speak(); // Arf, Arf

16

Summary of Polymorphism
public class Christmas

 extends Holiday

 implements Observable, Ignorable

{

 // code here

}

Holiday API Ignorable API Observable API

Christmas API

Object of class Christmas

Why only one class name here?

17

Summary of Polymorphism

Object instantiated as: Can/Cannot be cast:

Child or Later Descendent Class To Parent or Earlier Ancestor

(and back to its original class)

Parent or Earlier Ancestor Class

Implementing Class

To any Interface it implements

(and back to its original class)

To Child or Later Descendent

Any Abstract Class or Interface

cannot be instantiated

To any “incompatible class”

18

Polymorphism: UML Class Diagrams

• You see how both Inheritance and Interfaces can

be used to support polymorphic object references

• You should now be able to understand why both

Inheritance and Interfaces are shown with the same

“generalization” arrow icon in UML class diagrams

Any Child Class Parent Class

Any Implementing

Class
Interface

Any application

class that depends

on parent class or

interface can use:

child class

or

implementing class

