
File I/O and Exceptions

• File I/O

• Exceptions

• Throwing Exceptions

• Try statement and catch / finally clauses

• Checked and unchecked exceptions

• Throws clause

• Reading for this lecture: L&L 10.8, 11.1 – 11.6

2

CLI File Input

• In a CLI, we want the user to select a file within

a directory system so that its contents can be

read and processed

• However, we must rely on the user typing in the

file name (including any required path name)

• We can get the file name via a Scanner on
System.in using the nextLine method

• We can read the file data via a Scanner on a
File object using the nextLine method again

3

CLI File Input: Example
import java.util.Scanner;

import java.io.*;

public class FileDisplay

{

 public static void main (String [] args)

 throws IOException

 {

 Scanner scan = new Scanner(System.in);

 System.out.println("Enter name of file to display");

 File file = new File(scan.nextLine());

 scan = new Scanner (file); // done with keyboard

 while (scan.hasNext()) // ctl-D returns false

 System.out.println(scan.nextLine());

 }

}

4

CLI File Output
• In a CLI, we want the user to create a file within

a directory system so that its contents can be

written (or overwritten!)

• Be careful: Your code should check for a file by

that name and ask user if OK to overwrite it.

• Again, we rely on the user typing in the file name

• Again, we can get the file name via a Scanner
on System.in using the nextLine method

• We can write the file data via a PrintStream

on a File object using the println method

(System.out is a PrintStream object)

5

CLI File Output: Example
import java.util.Scanner;

import java.io.*;

public class FileWrite

{

 public static void main (String [] args) throws IOException

 {

 // Get filename and instantiate File object as before

 PrintStream out = new PrintStream(file);

 // Use ctl-D to close System.in

 // so scan.hasNext() will return false

 while (scan.hasNext()) {

 String line = scan.nextLine();

 out.println(line);

 }

 out.close();

 }

}

6

GUI File I/O

• In a GUI, requiring the user to enter a file

name (including a path name or not) is

considered to be NOT very user friendly

• We want our program to offer a choice of

the available files so that the user can:

– Move around within the available directories

– Select one of the files shown in a directory

7

File Chooser in GUI’s

• Recall that a dialog box is a small window

that "pops up" to interact with the user for a

brief, specific purpose

• A file chooser, the JFileChooser class,

supports a simple dialog box for this process

• See DisplayFile.java (page 521)

../examples/chap09/DisplayFile.java

8

Example: DisplayFile code segment

JFileChooser chooser = new JFileChooser();

int status = chooser.showOpenDialog(frame);

// There is also a showSaveDialog(frame)

if (status != JFileChooser.APPROVE_OPTION)

 ta.setText ("No File Chosen");

else

{ // read file

 File file = chooser.getSelectedFile();

 Scanner scan = new Scanner (file);

 ...

9

File Input/Output

• Notice that the main method in all three of

these examples indicates that the code
may throw an IOException

• If an error such as “file not found” occurs
during a file operation, an IOException

is generated by the system

• We’ll study exceptions in the next lecture

10

Exceptions

• An exception is an object that flags/ describes the
occurrence of an unusual or erroneous situation

• Java has a predefined set of Exception classes for
errors that can occur during execution

– e.g ArithmeticException

• We can write our own Exception classes if needed

• When code in a program detects an “impossible
condition”, it can throw a defined exception object

• The manner in which exceptions are processed is
an important design consideration

Throwing Exceptions

• For code to “throw” an exception:

– It must detect the “impossible” situation

– Instantiate and “throw” an exception object

• Example (throw is a Java reserved word):
if (boolean logic to detect impossible situation)

 throw new NameOfException(“text to print”);

• Some Java statements or methods in the

class library may throw exceptions this way

12

Handling Exceptions

• A program can deal with an exception in one
of three ways:

– ignore it (Let the JVM shut down the program)

– handle it where it occurs

– handle it at another place in the program

• If we ignore it, we get something like this in
the interactions pane (See Zero.java):

java.lang.ArithmeticException: / by zero

 at Zero.main(Zero.java:17)

 at sun.reflect.NativeMethodAccessor…

 …

13

The try Statement / catch Clause

• To handle an exception in a program, the line that
may throw the exception is executed within a try
statement followed by one or more catch clauses

• Each catch clause has an exception type and
reference name and is called an exception handler

• If an exception occurs,

– Processing stops in the body of the try statement

– Processing continues at the start of the first catch
clause matching the type of exception that occurred

• The reference name can be used in the catch
clause to get information about the exception

14

The finally Clause

• A try statement can have an optional clause
following the catch clauses, designated by the
reserved word finally

• The Java statements in the finally clause are
always executed
– If no exception is generated, the statements in the

finally clause are executed after the statements in the
try block complete

– If an exception is generated, the statements in the
finally clause are executed after the statements in the
appropriate catch clause complete

Example of try-catch-finally

try

{

 System.out.println(Integer.parseInt(string));

}

catch (NumberFormatException e)

{

 System.out.println(“Caught exception: ” + e);

}

finally

{

 System.out.println(“Done.”);

}

16

Exception Propagation

• An exception can be propagated up to the
caller to be handled at a higher level if it is
not appropriate to handle it where it occurs

• Exceptions propagate up through the
method calling hierarchy until they are
caught and handled or until they reach the
level of the main method and/or JVM

• See Propagation.java (page 546)

• See ExceptionScope.java (page 547)

../examples/chap10/Propagation.java
../examples/chap10/ExceptionScope.java

17

Checked/Unchecked Exceptions

• An exception is considered to be either
checked or unchecked

• A RunTimeException or its decendents
such as ArithmeticException,
NullPointerException, etc are the
only ones considered to be unchecked

• All other exceptions are considered to be
checked

• Many of the checked exceptions are related
to input / output, e.g. IOException

Checked Exceptions
• If a method can generate a checked exception,

it must have a throws clause in its header

• (Note: “throws” is a different reserved word)

• If method1 calls method2 that has a throws
clause in its method header, method1 must:

– Use try-catch around the call to method2

 OR

– Have a throws clause in its own method header

• The compiler will issue an error if a checked
exception is not caught or listed in a throws
clause

Example of the throws clause

public class FileDisplay

{

 public FileDisplay() throws IOException

 {

 Scanner scan = new Scanner(System.in);

 System.out.println("Enter name of file");

 File file = new File(scan.nextLine());

 // this line may throw an IOException

 // and its not inside a try statement

 scan = new Scanner (file);

Unchecked Exceptions

• An unchecked exception does not require
explicit handling

• Code or calls to a method that may generate
an unchecked exception can be put inside a
try-catch statement, but that is optional

