File I/0O and Exceptions

File 1/0O

Exceptions

Throwing Exceptions

Try statement and catch / finally clauses
Checked and unchecked exceptions

Throws clause

Reading for this lecture: L&L 10.8, 11.1 — 11.6




CLI File Input

In a CLI, we want the user to select a file within
a directory system so that its contents can be
read and processed

However, we must rely on the user typing in the
file name (including any required path name)

We can get the file name via a Scanner on
System. in using the nextLine method

We can read the file data via a Scanner on a
File object using the nextLine method again



CLI File Input: Example

import java.util.Scanner;
import java.io.*;

public class FileDisplay
{

public static void main (String [] args)
throws IOException

Scanner scan = new Scanner (System.in);
System.out.println ("Enter name of file to display");

File file = new File(scan.nextLine())

scan = new Scanner (file); // done with keyboard
while (scan.hasNext()) // ctl-D returns false
System.out.println(scan.nextLine()) ;



CLI File Output

In a CLI, we want the user to create a file within
a directory system so that its contents can be
written (or overwritten!)

Be careful: Your code should check for a file by
that name and ask user if OK to overwrite It.

Again, we rely on the user typing in the file name

Again, we can get the file name via a Scanner
on System. in using the nextLine method

We can write the file data via a PrintStream
on a File object using the println method
(System.out IS a PrintStream Object)



CLI File Output: Example

import java.util.Scanner;
import java.io.*;

public class FileWrite

{

public static void main (String [] args) throws IOException

{

// Get filename and instantiate File object as before

PrintStream out = new PrintStream(file) ;
// Use ctl-D to close System.in
// so scan.hasNext () will return false
while (scan.hasNext()) {
String line = scan.nextLine() ;
out.println(line) ;

}

out.close() ;



GUI File I/O

* In a GUI, requiring the user to enter a file
name (including a path name or not) is
considered to be NOT very user friendly

* We want our program to offer a choice of
the available files so that the user can:
— Move around within the available directories
— Select one of the files shown in a directory




File Chooser in GUI's

* Recall that a dialog box is a small window
that "pops up" to interact with the user for a

brief, specific purpose
* Afile chooser, the JFileChooser class,
supports a simple dialog box for this process

« See DisplayFile.java (page 521)



../examples/chap09/DisplayFile.java

Example: DisplayFile code segment

JFileChooser chooser = new JFileChooser () ;

int status = chooser.showOpenDialog (frame) ;
// There is also a showSaveDialog (frame)

1f (status != JFileChooser.APPROVE OPTION)
ta.setText ("No File Chosen");

else

{ // read file
File file = chooser.getSelectedFile();
Scanner scan = new Scanner (file);



File Input/Output

* Notice that the main method in all three of
these examples indicates that the code
may throw an IO0Exception

* |f an error such as “file not found” occurs
during a file operation, an IOException

IS generated by the system
« We'll study exceptions in the next lecture



Exceptions

An exception is an object that flags/ describes the
occurrence of an unusual or erroneous situation

Java has a predefined set of Exception classes for
errors that can occur during execution

— e.g ArithmeticException
We can write our own Exception classes if needed

When code in a program detects an “impossible
condition”, it can throw a defined exception object

The manner in which exceptions are processed IS
an important design consideration

10



Throwing Exceptions

* For code to “throw™ an exception:
— It must detect the “impossible” situation
— Instantiate and “throw™ an exception object

« Example (throw Is a Java reserved word):

1f (boolean logic to detect impossible situation)

throw new NameOfException (“text to print”);

 Some Java statements or methods in the
class library may throw exceptions this way



Handling Exceptions

* A program can deal with an exception in one
of three ways:

—ignore it (Let the JVM shut down the program)
— handle it where it occurs
— handle it at another place in the program
* If we ignore Iit, we get something like this In

the Iinteractions pane (See Zero.java):
java.lang.ArithmeticException: / by zero

at Zero.main(Zero.java:17)

at sun.reflect.NativeMethodAccessor...

12



The try Statement / catch Clause

« To handle an exception in a program, the line that
may throw the exception is executed within a try
statement followed by one or more catch clauses

 Each catch clause has an exception type and
reference name and is called an exception handler

 |f an exception occurs,

— Processing stops in the body of the try statement
— Processing continues at the start of the first catch
clause matching the type of exception that occurred
* The reference name can be used In the catch
clause to get information about the exception

13



The finally Clause

« A try statement can have an optional clause

following the catch clauses, designated by the
reserved word finally

« The Java statements in the finally clause are
always executed

— If no exception is generated, the statements in the

finally clause are executed after the statements in the
try block complete

— If an exception Is generated, the statements in the
finally clause are executed after the statements in the
appropriate catch clause complete

14



Example of try-catch-finally

try
{

System.out.println (Integer.parselnt(string)):;

J

catch (NumberFormatException e)

{

System.out.println (“"Caught exception: " + e);

}
finally

{

System.out.println (“Done.”);



Exception Propagation

An exception can be propagated up to the
caller to be handled at a higher level if it Is
not appropriate to handle it where it occurs

Exceptions propagate up through the
method calling hierarchy until they are
caught and handled or until they reach the
level of the main method and/or JVM

See Propagation.java (page 546)
See ExceptionScope.java (page 547)

16


../examples/chap10/Propagation.java
../examples/chap10/ExceptionScope.java

Checked/Unchecked Exceptions

An exception Is considered to be either
checked or unchecked

A RunTimeException or its decendents
such as ArithmeticException,
NullPointerException, etc are the
only ones considered to be unchecked

All other exceptions are considered to be
checked

Many of the checked exceptions are related
to Input / output, e.g. IOException

17



Checked Exceptions

If a method can generate a checked exception,
It must have a throws clause In its header

(Note: “throws” is a different reserved word)

If methodl calls method2 that has a throws
clause In its method header, methodl must:

— Use try-catch around the call to method?2

OR
— Have a throws clause In its own method header

The compiler will issue an error if a checked
exception is not caught or listed in a throws

clause



Example of the throws clause

public class FileDisplay

{

public FileDisplay () throws IOException

{

Scanner scan = new Scanner (System.in);
System.out.println ("Enter name of file");
File file = new File(scan.nextLine());

// this line may throw an IOException
// and its not inside a try statement
scan = new Scanner (file);



Unchecked Exceptions

* An unchecked exception does not require
explicit handling

* Code or calls to a method that may generate
an unchecked exception can be put inside a
try-catch statement, but that is optional



