
1

Sorting/Searching and File I/O

• Sorting

• Searching

• Reading for this lecture: L&L 10.4-10.5

2

Sorting
• Sorting is the process of arranging a list of items in

a particular order

• The sorting process is based on specific value(s)

– Sorting a list of test scores in ascending numeric order

– Sorting a list of people alphabetically by last name

• There are many algorithms, which vary in efficiency,

for sorting a list of items

• We will examine two specific algorithms:

– Selection Sort

– Insertion Sort

3

Selection Sort
• The approach of Selection Sort:

– Select a value and put it in its final place in the list

– Repeat for all other values

• In more detail:

– Find the smallest value in the list

– Switch it with the value in the first position

– Find the next smallest value in the list

– Switch it with the value in the second position

– Repeat until all values are in their proper places

4

Selection Sort

• An example:
 original: 3 9 6 1 2

 smallest is 1: 1 9 6 3 2

 smallest is 2: 1 2 6 3 9

 smallest is 3: 1 2 3 6 9

 smallest is 6: 1 2 3 6 9

• Each time, the smallest remaining value is found
and exchanged with the element in the "next"
position to be filled

5

Swapping Two Values

• The processing of the selection sort algorithm

includes the swapping of two values

• Swapping requires three assignment statements

and a temporary storage location of the same

type as the data being swapped:

 int first = 1, second = 2;

 int temp = first;

 first = second; // == 2 now

 second = temp; // == 1 now

6

Polymorphism in Sorting

• Recall that a class that implements the Comparable
interface defines a compareTo method that returns
the relative order of its objects

• We can use polymorphism to develop a generic sort
for any set of Comparable objects

• The sorting method accepts as a parameter an array
of Comparable objects

• That way, one method can be used to sort a group of
People, or Books, or whatever as long as the class
implements Comparable

7

Selection Sort

• The sorting method doesn't "care" what type of
object it is sorting, it just needs to be able to call
the compareTo method of that object

• That is guaranteed by using Comparable as the
parameter type passed to the sorting method

• Each Comparable class has a compareTo
method that determines what it means for one
object of that class to be “less than another”

• See PhoneList.java (page 505)

• See Sorting.java (page 506), specifically the
selectionSort method

• See Contact.java (page 507-508)

../examples/chap09/PhoneList.java
../examples/chap09/Sorting.java
../examples/chap09/Contact.java

8

Insertion Sort
• The approach of Insertion Sort:

– Pick any item and insert it into its proper place in a

sorted sublist

– Repeat until all items have been inserted

• In more detail:

– Consider the first item to be a sorted sublist (of one item)

– Insert the second item into the sorted sublist, shifting the

first item as needed to make room to insert the new

addition

– Insert the third item into the sorted sublist (of two items),

shifting items as necessary

– Repeat until all values are inserted into their proper

positions

9

Insertion Sort

• An example:

 original: 3 9 6 1 2

 insert 9: 3 9 6 1 2

 insert 6: 3 6 9 1 2

 insert 1: 1 3 6 9 2

 insert 2: 1 2 3 6 9

• See Sorting.java (page 506-507),

specifically the insertionSort method

../examples/chap09/Sorting.java

10

Comparing Sorts

• The Selection and Insertion sort algorithms are
similar in efficiency

• They both have outer loops that scan all
elements, and inner loops that compare the
value of the outer loop with almost all values in
the list

• Approximately n2 number of comparisons are
made to sort a list of size n

• We therefore say that these sorts are of order n2

• Other sorts are more efficient: order n log2 n

11

Searching

• Searching is the process of finding a target
element within a group of items called the
search pool

• The target may or may not be in the search pool

• We want to perform the search efficiently,
minimizing the number of comparisons

• Let's look at two classic searching approaches:
linear search and binary search

• As we did with sorting, we'll implement the
searches with polymorphic Comparable
parameters

12

Linear Search

• A linear search begins at one end of a list

and examines each element in turn

• Eventually, either the item is found or the

end of the list is encountered

• See PhoneList2.java (page 512-513)

• See Searching.java (page 514-515),

specifically the linearSearch method

../examples/chap09/PhoneList2.java
../examples/chap09/Searching.java

13

Binary Search

• A binary search assumes the list of items in the
search pool is sorted

• It eliminates a large part of the search pool with a
single comparison

• A binary search first examines the middle element
of the list -- if it matches the target, the search is
over

• If it doesn't, only half of the remaining elements
need be searched

• Since they are sorted, the target can only be in
one half of the other

14

Binary Search

• The process continues by comparing the target
to the middle element of the remaining viable
candidates

• Each comparison eliminates approximately half
of the remaining data

• Eventually, the target is found or there are no
remaining viable candidates (and the target has
not been found)

• See PhoneList2.java (page 512-513)

• See Searching.java (page 514-515),
specifically the binarySearch method

../examples/chap09/PhoneList2.java
../examples/chap09/Searching.java

15

Binary Versus Linear Search

• The efficiency of binary search is good for
the retrieval of data from a sorted group

• However, the group must be sorted initially

• As items are added to the group, it must be
kept in sorted order

• The sorting process creates inefficiency

• If you add data to a group much more often
than you search it, it may be worse to use a
binary search than a linear search

