Sorting/Searching and File 1/O

« Sorting
« Searching
* Reading for this lecture: L&L 10.4-10.5



Sorting
Sorting is the process of arranging a list of items In
a particular order

The sorting process is based on specific value(s)
— Sorting a list of test scores in ascending numeric order
— Sorting a list of people alphabetically by last name

There are many algorithms, which vary in efficiency,
for sorting a list of items
We will examine two specific algorithms:

— Selection Sort
— Insertion Sort



Selection Sort

* The approach of Selection Sort:
— Select a value and put it in its final place in the list
— Repeat for all other values

* In more detall:
— Find the smallest value in the list
— Switch it with the value in the first position
— Find the next smallest value In the list
— Switch it with the value in the second position
— Repeat until all values are in their proper places

3



Selection Sort

« An example:

original: 3 9 0 1 2
smallest 1s 1: 1 9 6 3 2
smallest 1s 2: 1 2 6 3 9
smallest 1s 3: 1 2 3 o 9
smallest 1s 6: 1 2 3 o 9

« Each time, the smallest remaining value is found
and exchanged with the element in the "next"
position to be filled



Swapping Two Values

* The processing of the selection sort algorithm
Includes the swapping of two values

e Swapping requires three assignment statements
and a temporary storage location of the same
type as the data being swapped:

int first = 1, second = 2;
int temp = first;
first = second; // == 2 now

second = temp; // == 1 now



Polymorphism in Sorting

Recall that a class that implements the Comparable
Interface defines a compareTo method that returns
the relative order of its objects

We can use polymorphism to develop a generic sort
for any set of Comparable objects

The sorting method accepts as a parameter an array
of Comparable objects

That way, one method can be used to sort a group of
People, Or Books, or whatever as long as the class

Implements Comparable



Selection Sort

The sorting method doesn't "care” what type of
object it Is sorting, It just needs to be able to call
the compareTo method of that object

That Is guaranteed by using Comparable as the
parameter type passed to the sorting method

Each Comparable class has a compareTo
method that determines what it means for one
object of that class to be “less than another”

See Phonelist.java (page 505)

See sorting. java (page 506), specifically the
selectionSort method

See Contact.java (page 507-508)



../examples/chap09/PhoneList.java
../examples/chap09/Sorting.java
../examples/chap09/Contact.java

Insertion Sort
« The approach of Insertion Sort:
— Pick any item and insert it into its proper place in a
sorted sublist
— Repeat until all items have been inserted

* In more detall:

— Consider the first item to be a sorted sublist (of one item)

— Insert the second item into the sorted sublist, shifting the
first item as needed to make room to insert the new
addition

— Insert the third item into the sorted sublist (of two items),
shifting items as necessary

— Repeat until all values are inserted into their proper
positions



Insertion Sort

* An example:
original:
insert 9:

insert 6:

= w W W

9 6 1
9 6 1
6 9 1
insert 1: 3 o 9

insert 2: 1 2 3 0

 See Sorting.java (page 506-507),
specifically the insertionSort method

O \ O O A O R A



../examples/chap09/Sorting.java

Comparing Sorts

The Selection and Insertion sort algorithms are
similar in efficiency

They both have outer loops that scan all
elements, and inner loops that compare the
value of the outer loop with almost all values In
the list

Approximately n? number of comparisons are
made to sort a list of size n

We therefore say that these sorts are of order n?
Other sorts are more efficient: order n log, n

10



Searching

Searching is the process of finding a target
element within a group of items called the
search pool

The target may or may not be in the search pool

We want to perform the search efficiently,
minimizing the number of comparisons

Let's look at two classic searching approaches:
linear search and binary search

As we did with sorting, we'll implement the
searches with polymorphic Comparable
parameters

11



Linear Search

A linear search begins at one end of a list
and examines each element in turn

Eventually, either the item is found or the
end of the list IS encountered

See PhonelList?2.java (page 512-513)

See Searching. java (page 514-515),
specifically the 1inearSearch method

12


../examples/chap09/PhoneList2.java
../examples/chap09/Searching.java

Binary Search

A binary search assumes the list of items in the
search pool is sorted

It eliminates a large part of the search pool with a
single comparison

A binary search first examines the middle element
of the list -- If it matches the target, the search is
over

If it doesn't, only half of the remaining elements
need be searched

Since they are sorted, the target can only be in
one half of the other

13



Binary Search

The process continues by comparing the target
to the middle element of the remaining viable
candidates

Each comparison eliminates approximately half
of the remaining data

Eventually, the target is found or there are no
remaining viable candidates (and the target has
not been found)

See Phonelist?2.java (page 512-513)

See Searching. java (page 514-515),
specifically the binarySearch method

14


../examples/chap09/PhoneList2.java
../examples/chap09/Searching.java

Binary Versus Linear Search

The efficiency of binary search is good for
the retrieval of data from a sorted group

However, the group must be sorted initially

As Items are added to the group, it must be
kept in sorted order

The sorting process creates inefficiency

If you add data to a group much more often
than you search it, it may be worse to use a
binary search than a linear search

15



