
Introduction to OOP and UML

• Programming Paradigms

– Procedural

– Functional

– Object Oriented

• Object-Oriented Design

• Unified Modeling Language

– Use Cases

– Class Diagrams

– Sequence Diagrams

– Example from Project 1

Programming Paradigms

• A paradigm is an ideal or a model to follow
in doing something, e.g. programming

• In CS110, you were introduced to the three
predominant programming paradigms:

– Procedural

– Functional

– Object-Oriented

• In this course, we will further explore the
Object-Oriented paradigm using Java

Object-Oriented Design

• The OOP paradigm was developed by SW

engineers to solve most if not all of the

problems described in L&C section 1.1.

• It has become a predominant programming

style for use in many applications, e.g.

graphical user interfaces (GUIs), etc.

• Java is considered to be an Object-Oriented

Programming (OOP) language because it

has specific features to fully support OOP

Object-Oriented Design

• In the OOP paradigm, the designer focuses

on the data rather than the algorithm steps

• The data is associated with objects that are

present in the problem, such as:

– Monitor

– Keyboard

– File

– Frame for a GUI

– Icon in a frame for a GUI

Object-Oriented Design
• Use UML “use case diagrams” to sketch out

aspects of the problem you are trying to solve

• Don’t get too detailed yet

• Do NOT use flow charts or pseudo-code yet

Cat Dog Snake

Food

Driver

Car

Animals

Engine Trans.

Components

Tire

Object-Oriented Design

• “Classify” the objects based on similarities of

their attributes and behaviors

– Examples of objects that could be classified as

Animals: Dogs, Cats, Snakes, Fish, etc.

• Identify objects that have other objects as

components or parts of themselves

– Example: A car is made up of an engine, a

transmission, and tires

• Identify objects that use other objects

– A Driver drives a Car and an Animal eats Food

Object-Oriented Design

• Define the names of classes for the objects

– Usually nouns, e.g. Driver, Car, Animal, Cat, etc.

• Define the attributes of the classes

– Attributes: “things that objects of the class are”

– Usually adjectives, e.g. color, size, furry, etc.

• Define the behaviors of the classes

– Behaviors: “things that object of the class can

have done to them or services they can perform”

– Usually verbs, e.g. drive, eat, etc.

Object-Oriented Design

• Define the relationships between classes

– Inheritance – More specific classes from general

ones, e.g. a Cat is an Animal, a Dog is an Animal

– Interface – A standard way that these objects can

connect to other objects, e.g. power cord, etc.

– Aggregation/Composition – Classes that are built

up from or composed of component classes, e.g.

a Car has an Engine, a Transmission, and Tires

– Dependencies – Need for objects of other classes,

e.g. a Driver drives a Car, a Cat eats Food

Object-Oriented Design

• Define the methods of each class to support

the interactions and behavior of its objects

• Identify any methods that are identical to

methods other classes also provide to connect

to a standard interface, e.g. implementing a

network connector or a power cord on a PC

• Flow charts or pseudo code may be used for

individual method designs (procedural code)

Unified Modeling Language (UML)

• The Unified Modeling Language (UML) was

developed in the 1990’s to support OOP

software design

• The ”three amigos” (Grady Booch, Ivar

Jacobson, and Jim Rumbaugh) unified their

separate methodologies when they formed

Rational Corporation

• A good reference is UML Distilled, 3rd Ed.,

Martin Fowler, Addison-Wesley/Pearson

11

Unified Modeling Language (UML)

• UML is a graphical tool to visualize and

analyze the requirements and do design of

an object-oriented solution to a problem

• Three basic types of diagrams:

– Use Case Diagram (Shown previously)

– Class Diagram (The most useful one for us)

– Interaction Diagram

• I will use Class Diagrams in presenting the

design for our Java programs / projects

12

Unified Modeling Language (UML)

• Advantage of UML – It is graphical

– Allows you to visualize the problem / solution

– Organizes your detailed information

• Disadvantage of UML – It is graphical

– Can be done with pencil and paper – tedious!

– Commercial UML S/W tools are expensive!

• Example: Rational ROSE

• IBM acquired Rational and the three amigos got rich

– There are some free-ware UML Design Tools

13

UML Class Diagrams

• UML class diagrams show:

– The external and internal attributes and methods

for each class

– The relationships between the classes

• They’re a static view of the program structure

• They do not show:

– The number of objects of each class instantiated

– The timing of the interactions between objects

UML Class Diagrams

Class Name

List of Attributes

List of Methods

+ publicClassAttribute : datatype

- privateClassAttribute : datatype

+ publicInstanceAttribute : datatype

- privateInstanceAttribute : datatype

+ publicClassMethod (parameters) : returnDataType

- privateClassMethod (parameters) : returnDataType

+ publicInstanceMethod (parameters) : returnDataType

- privateInstanceMethod (parameters) : returnDataType

15

UML Class Diagrams

• UML Attribute Descriptions

– Protection: + public, - private, # protected

– Attribute name :

– Attribute data type

• UML Method Descriptions

– Protection: + public, - private, # protected

– Method name

– Method parameter list (name : datatype, etc.) :

– Method return type

• Underlined means class attribute or method

UML Class Diagrams

Class Name Super Class Name

Class Name

Interface Name

Class Name

Required Methods

Class Name

Depends on ImplementsInherits from

Driver Class

depends on

Car Class

Cat Class

inherits from

Animal Class

Computer Class

implements

WiFi Interface

UML Class Diagrams

Aggregate Name

Is composed of

Component3Component1

Car Class

is composed of

Engine Class, Transmission Class, and Tire Class

Component2

UML Interaction Diagrams

• UML interaction diagrams show

– The objects of each class involved in a scenario

– The order of interactions between the objects

• They are a dynamic view of the behavior

• Often called ladder diagrams due to their

resemblance to a ladder or group of ladders

18

UML Interaction Diagrams

19

Time

A Timeline For Each Class : Object Involved

Driver : me Car: myCar Engine: itsEngine

Transmission :

itsTransmission

Turn Key

Start

Put in Gear
Shift

OK Return

OK Return

OK Return

OK Return

UML Example (Project 1)

• Polynomial Class implements Comparable<T>

so that an array of its objects can be sorted

• It uses the library ArrayList<T> class to store its

polynomial coefficients (private)

• TestPolynomial Class contains test cases that

can be run automatically to test your class

• Arrays.sort() can sort Comparable<T> arrays

• PolyApp is your class using Polynomial objects

20

21

<<interface>>
java.lang.Comparable<T>

Polynomial implements Comparable<Polynomial>

TestPolynomial

PolyApp

+ main (String []) : void

+ compareTo (that : T) : int

jUnit.TestCase

- coeffs : ArrayList<Integer>
+ Polynomial (coeffs : int []) {Constructor}
+ toString () : String
+ compareTo (that : Polynomial) : int
+ equals(that : Polynomial) : boolean
+ add (that : Polynomial) : Polynomial
+ sub (that : Polynomial) : Polynomial
+ mul (that : Polynomial) : Polynomial
+ div (divisor: Polynomial) : Polynomial []
+ evaluate (x : double) : double
+ derivative () : Polynomial
+ root(guess : double, TOLERANCE : double) : double

java.util.ArrayList<T>

java.util.Arrays

