Algorithm Efficiency, Big O Notation,
and Javadoc

 Algorithm Efficiency

* Big O Notation

* Role of Data Structures

« Javadoc

 Reading: L&C 2.1-2.4, HTML Tutorial

Algorithm Efficiency

» Let’'s look at the following algorithm for
initializing the values in an array:
final 1int N = 500;
int [] counts = new 1nt[N];
for (int 1=0; 1<counts.length; 1++)

counts[i] = 0;

* The length of time the algorithm takes to
execute depends on the value of N

Algorithm Efficiency

* In that algorithm, we have one loop that
processes all of the elements in the array

* Intuitively:
— If N was half of its value, we would expect the
algorithm to take half the time

— If N was twice its value, we would expect the
algorithm to take twice the time

* That is true and we say that the algorithm
efficiency relative to N Is linear

Algorithm Efficiency

» Let's look at another algorithm for initializing the
values in a different array:
final i1nt N = 500;
int [] [] counts = new 1nt[N] [N];
for (int 1=0; 1<counts.length; 1++)
for (int 3J=0; j<counts[1i].length; j++)
counts[1][]J] = 0;
* The length of time the algorithm takes to
execute still depends on the value of N

Algorithm Efficiency

 However, In the second algorithm, we
have two nested loops to process the
elements In the two dimensional array

* Intuitively:
— If N is half its value, we would expect the
algorithm to take one quarter the time

— If N Is twice its value, we would expect the
algorithm to take quadruple the time

* That is true and we say that the algorithm
efficiency relative to N Is quadratic

Big-O Notation

* We use a shorthand mathematical notation to
describe the efficiency of an algorithm relative
to any parameter n as its “Order” or Big-O
— We can say that the first algorithm is O(n)

— We can say that the second algorithm is O(n?)

* For any algorithm that has a function g(n) of the

parameter n that describes its length of time to
execute, we can say the algorithm is O(g(n))

* We only include the fastest growing term and
ignore any multiplying by or adding of constants

Eight Growth Functions

* Eight functions O(n) that occur frequently
In the analysis of algorithms (in order of
Increasing rate of growth relative to n):

— Constant = 1

— Logarithmic = log n
— Linear = n

— Log Linear = nlog n

— Quadratic = n?

— Cubic = n®

— Exponential = 2"

— Exhaustive Search =~ n!

Growth Rates Compared

n=1 |n=2 |n=4|n=8 n=16 n=32
1 1 1 1 |1 1 1
logn 0 1 2 |3 4 5
n 1 2 4 |8 16 32
nlogn |0 2 8 |24 64 160
n? 1 4 16 |64 256 1024
n3 1 8 64 |512 4096 32768
2" 2 4 16 |256 65536 |4294967296
n! 1 2 24 40320 [20.9T |Don’t ask!

Travelling Salesman Problem Joke

BRUTE-FORCE DYNAMIC |
SOL.UTTON: PROGRAMMING SELUNG ON ERAY:
0(n!) ALGORITHMS: 0(1)
’ O (ﬂ‘lzﬂ)
STILL WORKING

ON YOUR ROUTE?

AN
~
SHUT THE
HEW VP

Big-O for a Problem

* O(g(n)) for a problem means there is some
O(g(n)) algorithm that solves the problem

* Don’t assume that the specific algorithm that
you are currently using is the best solution
for the problem

* There may be other correct algorithms that
grow at a smaller rate with increasing n

* Many times, the goal is to find an algorithm
with the smallest possible growth rate

10

Role of Data Structures

* That brings up the topic of the structure of
the data on which the algorithm operates

* If we are using an algorithm manually on
some amount of data, we intuitively try to
organize the data in a way that minimizes
the number of steps that we need to take

* Publishers offer dictionaries with the words
listed in alphabetical order to minimize the
length of time it takes us to look up a word

11

Role of Data Structures

We can do the same thing for algorithms In
our computer programs

Example: Finding a numeric value in a list

If we assume that the list Is unordered, we
must search from the beginning to the end

On average, we will search half the list
Worst case, we will search the entire list
Algorithm is O(n), where n is size of array

12

Role of Data Structures

 Find a match with value In an unordered list
int [] list = {7, 2, 9, 5, 6, 4};

for (int 1=0; 1i<list.length, i++)
1f (value == list[1])
statement; // found it
// didn’t find it

13

Role of Data Structures

If we assume that the list Is ordered, we can
still search the entire list from the beginning
to the end to determine If we have a match

But, we do not need to search that way

Because the values are in numerical order,
we can use a binary search algorithm

Like the old parlor game “Twenty Questions”
Algorithm is O(log,n), where n Is size of array

14

Role of Data Structures

Find a match with value in an ordered list
int [] list = {2, 4, 5, o6, 7, 9};
int min = 0, max = list.length-1;
while (min <= max) {
1if (value == list|[(min+max)/2])
statement; // found it
else
if (value < list][(min+max)/2])
max = (min+max)/2 - 1;
else
min = (min+max)/2 + 1;
}
statement; // didn’t find it

15

Role of Data Structures

 The difference In the structure of the data
between an unordered list and an ordered
list can be used to reduce algorithm Big-O

* This is the role of data structures and why
we study them

* We need to be as clever in organizing our
data efficiently as we are Iin figuring out an
algorithm for processing it efficiently

16

Role of Data Structures

The only data structure implemented In the
Java language itself is the array using [|

All other data structures are implemented In
classes — either our own or library classes

To properly use a class as a data structure,
we must know the Application Programmer’s
Interface (API)

he API for a class is documented using
Javadoc comments In the source code that
can be used to auto-create a web page

Javadoc

Javadoc Is a JDK tool that creates HTML
user documentation for your classes and
their methods

In this case, user means a programmer who
will be writing Java code using your classes

You can access Javadoc via the JDK CLI:
> Javadoc MyClass.java

You can access Javadoc via Dr Java menu:
Tools > Javadoc All Documents
Tools > Preview Javadoc for Current Document

18

Javadoc

* The Javadoc tool scans your source file
for specialized multi-line style comments:
/**
* <p>HTML formatted text here</p>
*/
* Your Javadoc text is written in HTML so

that it can appear within a standardized
web page format

19

Block Tags for Classes

* At the class level, you must include these
block tags with data (each on a separate line):
/**
* (@author Your Name
* (@dversion Version Number or Date
*/
* You should include HTML text describing the
use of this class and perhaps give examples

20

Block Tags for Methods

» At the method level, you must include these
block tags with data (each on a separate line):
/**
* (@param HTML text for 1st parameter
* (@param HTML text for 2nd parameter

*

* (@return HTML text for return value
*/
* If there are no parameters or return type, you
can omit these Javadoc block tags

21

In Line Tags

« At any point in your Javadoc HTML text,
you may use In-Line Tags such as @Ilink:

/**
* <p>See website {(dlink name url}
* for more details.</p>

*/
* In-Line tags are always included inside { }

« These { } areinsidethe /** and */
so the compiler does not see them

22

