
1

Storage Strategies: Dynamic Linking

• References as Links

• Data Encapsulation and Linking

• Linked Lists

• Singly Linked Lists

• Doubly Linked Lists

• Reading: L&C 4.1-4.3, 4.6, 7.4

2

References as Links

• A linked structure is a data structure that

uses object reference variables to create

links between objects

• Declaring an object reference variable
Object obj = new Object();

• A diagram of an object reference variable

obj

Object reference variable An object of Object class

3

Data Encapsulation and Linking

• It is desirable to have a generic link class

that can be used to link any type of objects

of any class encapsulating the “real” data

• Class LinearNode<T> does that this way

Object of type T

top
LinearNode <T>

next;

T element;

null

Object of type T

LinearNode <T>

next;

T element;

Object of type T

LinearNode <T>

next;

T element;

4

Data Encapsulation and Linking

• A self-referential (or recursive) LinearNode<T> object

has a reference to another LinearNode<T> object
public class LinearNode<T>

{

// attributes of the data in an element object

private T element // encapsulated element

// link (or pointer) to another LinearNode object

private LinearNode<T> next; // next item in list

// constructor

public LinearNode(T element)

{

this.element = element; // encapsulate element

next = null; // set the link to null

}

5

Data Encapsulation and Linking

// accessor and mutator methods

public void setNext(LinearNode<T> next)

{

this.next = next;

}

public LinearNode<T> getNext()

{

return next;

}

public T getElement()

{

return element;

}

}// end class LinearNode<T>

6

Data Encapsulation and Linking

• Unlike an array which has a fixed size, a
linked list is considered to be a dynamic
memory structure

• The amount of memory used grows and
shrinks as objects are added to the list or
deleted from the list

• The Java compiler and virtual machine
allocate memory for each object as it is
created (via the new operator) and free
memory as each object is garbage collected

7

Managing Singly Linked Lists

• Can insert a new LinearNode in two places:

– At the front

– In the middle or at the end

• Can delete a LinearNode in two places:

– At the front

– In the middle or at the end

• The order in which references are changed

is crucial to maintaining linked list integrity

8

Inserting Objects in a Linked List

• Create new LinearNode object and link at top
LinearNode<T> newNode = new LinearNode<T>(element);

newNode.setNext(top);

top = newNode;

newNode = null; // may be needed for stale reference

// if newNode won’t go out of scope

newNode

top

LinearNode<T>

next;

LinearNode<T>

next;

LinearNode<T>

next;

2

3

1

4

9

Inserting Objects in a Linked List
• Create new LinearNode object

• Link after current LinearNode object

(current could be at the end)
LinearNode<T> newNode = new LinearNode<T>(element);

newNode.setNext(current.getNext());

current.setNext(newNode);

newNode = null; newNode

top

LinearNode<T>

next;

LinearNode<T>

next;

LinearNode<T>

next;

2

3

1

4

LinearNode<T>

next;

current

10

Removing Objects from a Linked List

• Remove LinearNode object at front
LinearNode<T> removed = top;

top = top.getNext());

removed.setNext(null); // remove stale reference

removed

top LinearNode<T>

next;
LinearNode<T>

next;

LinearNode<T>

next;

2

3

1

11

Removing Objects from a Linked List

• Remove LinearNode after current LinearNode

object (removed object could be at end)
LinearNode<T> removed = current.getNext();

current.setNext(removed.getNext());

removed.setNext(null); // remove stale reference

top LinearNode<T>

next;
LinearNode<T>

next;

LinearNode<T>

next;
2 3

1
current removed

12

Linked Stack Implementation

• We can use the LinearNode class to

implement a Stack using linking

• We use the attribute name “top” to have a

meaning consistent with a stack

Object of type T

top LinearNode next;

T element;

Object of type T

LinearNode next;

T element;

null

count integer

13

Linked Stack Implementation

• push – O(1)
public void push (T element)

{

LinearNode<T> temp = new LinearNode<T>(element);

temp.setNext(top);

top = temp;

count++;

}

• Note difference between the LinkedStack

push method and ArrayStack push method

14

Linked Stack Implementation

• pop – O(1)
public T pop () throws EmptyStackException

{

if (isEmpty()) throw new EmptyStackException();

T result = top.getElement();

top = top.getNext(); // LinearNode is garbage now

count--;

return result;

}

• Note difference between the LinkedStack
pop method and ArrayStack pop method

LinkedStack Implementation

• Notice that we don’t need an expandCapacity

method in our LinkedStack implementation

– The “new” operator called in the push method

automatically allocates the memory for each

LinearNode object when it is needed

– When the reference to the LinearNode at top is

overwritten in the pop method, the JVM garbage

collector will release the memory for the now

unneeded LinearNode

15

16

StackIterator Definition/Attributes

• Class Definition/Attribute Declarations

(implemented as an inner class)
private class StackIterator<T>

implements Iterator<T>

{

private T current;

• Constructor:
public StackIterator()

{

current = top; // start at top for LIFO

}

17

StackIterator Methods

• hasNext – O(1)
public boolean hasNext()

{

return current != null;

}

• next – O(1)
public T next()

{

if (!hasNext())

throw new NoSuchElementException();

T result = current.getElement();

current = current.getNext();

return ;

}

18

Doubly Linked Lists

• Each DoubleNode object has a reference to

next DoubleNode and previous DoubleNode
public class DoubleNode<T>

{

private DoubleNode<T> next;

private DoubleNode<T> prev;

private T element;

Object of type T

front DoubleNode<T> next

DoubleNode<T> prev

T element

Object of type T

null

null back

DoubleNode<T> next

DoubleNode<T> prev

T element

19

Doubly Linked Lists

• To add a DoubleNode object to the list,
your code must set the DoubleNode next

and prev variables in both the new node

and its adjacent neighbors

• To delete a DoubleNode object from the list,

your code must bypass the DoubleNode
next and prev variables in both neighbors

adjacent to the removed node and may
need to set its two stale references to null

Traversing Linked Lists

• We can use “for” or “while” loops to traverse

a linked list or a doubly linked list - examples:
for(LinearNode<T> node = front; node != null;

node = node.getNext()) { . . . }

for(DoubleNode<T> node = back; node != null;

node = node.getPrev()) { . . . }

LinearNode<T> node = front; // or DoubleNode back

while(node != null)

{ . . .

node = node.getNext(); // or Doublenode prev

}
20

