
1

Stacks

• Stack Abstract Data Type (ADT)

• Stack ADT Interface

• Stack Design Considerations

• Stack Applications

• Evaluating Postfix Expressions

• Introduction to Project 2

• Reading: L&C Section 3.2, 3.4-3.8

2

Stack Abstract Data Type
• A stack is a linear collection where the

elements are added or removed from the
same end

• The processing is last in, first out (LIFO)

• The last element put on the stack is the first
element removed from the stack

• Think of a stack of cafeteria trays

3

A Conceptual View of a Stack

Top of Stack

Adding an Element Removing an Element

4

Stack Terminology

• We push an element on a stack to add one
• We pop an element off a stack to remove one
• We can also peek at the top element without

removing it
• We can determine if a stack is empty or not

and how many elements it contains (its size)
• The StackADT interface supports the above

operations and some typical class operations
such as toString()

5

Stack ADT Interface

<<interface>>
StackADT<T>

+ push(element : T) : void
+ pop () : T
+ peek() : T
+ isEmpty () : bool
+ size() : int
+ toString() : String

6

Stack Design Considerations

• Although a stack can be empty, there is no
concept for it being full. An implementation
must be designed to manage storage space

• For peek and pop operation on an empty
stack, the implementation would throw an
exception. There is no other return value
that is equivalent to “nothing to return”

• A drop-out stack is a variation of the stack
design where there is a limit to the number
of elements that are retained

7

Stack Design Considerations

• No iterator method is provided

• That would be inconsistent with restricting
access to the top element of the stack

• If we need an iterator or other mechanism
to access the elements in the middle or at
the bottom of the collection, then a stack is
not the appropriate data structure to use

8

Applications for a Stack

• A stack can be used as an underlying
mechanism for many common applications
– Evaluate postfix and prefix expressions

– Reverse the order of a list of elements

– Support an “undo” operation in an application

– Backtrack in solving a maze

9

Evaluating Infix Expressions

• Traditional arithmetic expressions are written
in infix notation (aka algebraic notation)
(operand) (operator) (operand) (operator) (operand)

4 + 5 * 2

• When evaluating an infix expression, we
need to use the precedence of operators
– The above expression evaluates to 4 + (5 * 2) = 14

– NOT in left to right order as written (4 + 5) * 2 = 18

• We use parentheses to override precedence

10

Evaluating Postfix Expressions

• Postfix notation is an alternative method to
represent the same expression
(operand) (operand) (operand) (operator) (operator)

4 5 2 * +

• When evaluating a postfix expression, we
do not need to know the precedence of
operators

• Note: We do need to know the precedence
of operators to convert an infix expression
to its corresponding postfix expression

11

Evaluating Postfix Expressions

• We can process from left to right as long
as we use the proper evaluation algorithm

• Postfix evaluation algorithm calls for us to:
– Push each operand onto the stack

– Execute each operator on the top element(s)
of the stack (An operator may be unary or
binary and execution may pop one or two
values off the stack)

– Push result of each operation onto the stack

12

Evaluating Postfix Expressions

• Expression = 7 4 -3 * 1 5 + / *

-3

4

7

-12

7

-12

7

1

5*

-12

7

6

-2

7 -14

+
/

*

13

Evaluating Postfix Expressions

• Core of evaluation algorithm using a stack
while (tokenizer.hasMoreTokens()) {

token = tokenizer.nextToken(); // returns String

if (isOperator(token) {

int op2 = (stack.pop()).intValue(); // Integer

int op1 = (stack.pop()).intValue(); // to int

int res = evalSingleOp(token.charAt(0), op1, op2);

stack.push(new Integer(res));

}

else // String to int to Integer conversion here

stack.push (new Integer(Integer.parseint(token)));

} // Note: Textbook’s code does not take advantage of

// Java 5.0 auto-boxing and auto-unboxing

14

Evaluating Postfix Expressions

• Instead of this:
int op2 = (stack.pop()).intValue(); // Integer to int

int op1 = (stack.pop()).intValue(); // Integer to int

int res = evalSingleOp(token.charAt(0), op1, op2);

• Why not this:
int res = evalSingleOp(token.charAt(0),

(stack.pop()).intValue(),

(stack.pop()).intValue());

• In which order are the parameters evaluated?

• Affects order of the operands to evaluation

15

Evaluating Postfix Expressions

• The parameters to the evalSingleOp
method are evaluated in left to right order

• The pops of the operands from the stack
occur in the opposite order from the order
assumed in the interface to the method

• Results: Original Alternative

6 3 / = 2 6 3 / = 0

3 6 / = 0 3 6 / = 2

16

Evaluating Postfix Expressions

• Our consideration of the alternative code
above demonstrates a very good point

• Be sure that your code keeps track of the
state of the data stored on the stack

• Your code must be written consistent with
the order data will be retrieved from the
stack to use the retrieved data correctly

17

Introduction to Project 2

• The term fractal was coined by Mandelbrot in 1975
for a geometric shape that has a dimensional order
between the normal 1D, 2D, 3D, etc dimensions

• The concept has been used to describe the rough
ragged shape of shorelines and other phenomena

• If you measure shoreline length at a large scale, it
is shorter than if you measure pieces of it at any
smaller scale and add up the lengths

• Hence, a shoreline is greater than 1D but obviously
is still less than 2D

18

Introduction to Project 2

• A visual characteristic of a fractal such as a
shoreline is that it has the same appearance
at a large scale as it does when you look at it
at smaller and smaller scales

• It repeats the same shape at all scales

• The fractal we will be generating in Project 2
is a repeating sequence of triangles inside of
each triangle – similar to a Sierpinski triangle

• See the following figure

Introduction to Project 2

19

w

d

Position Directions

20

Introduction to Project 2

• You are provided the following code:
Applet.html – An html file to launch the applet

(You can use the Appletviewer instead of this)

Corner.java – Represents the corner of a triangle
and has some useful methods (len and mid)

Triangle.java – Represents a triangle with three
corners and has some code you need to write

Iterative.java and Recursive.java – The top level
applets for drawing the sequence of triangles

Introduction to Project 2

21

• Study and understand the provided code

• You need to do the following:
– Write Triangle class getNextLevel() and size()

• Use provided Corner class methods – len and mid

• The getNextLevel method returns one of six possible
Triangle objects based on the index parameter

• The Size method returns the circumference based on
the three Corner objects.

– Write the Iterative class drawTriangle method

– Write the Recursive class drawTriangle method

Introduction to Project 2

• In the iterative drawTriangle method:
– Instantiate a stack to contain Triangle objects

– Push the Triangle t parameter on the stack

– Iterate while the stack is not empty
• Remove and draw the Triangle on top of the stack

• If it is still larger than Triangle.SMALLEST create and
push its six sub-triangles on the stack

• Test the Applet

• Modify it to use a queue instead of a stack

• Test the Applet again 22

Introduction to Project 2

• In the recursive drawTriangle method:
– Draw the Triangle t parameter

– If it is still larger than Triangle.SMALLEST
• Recursively call drawTriangle six times - once with

each of the six sub-triangles of the Triangle t

• Test the Applet

• Write a report on all three Applets versions
(two iterative and one recursive)

	Page #1
	Page #2
	Page #3
	Page #4
	Page #5
	Page #6
	Page #7
	Page #8
	Page #9
	Page #10
	Page #11
	Page #12
	Page #13
	Page #14
	Page #15
	Page #16
	Page #17
	Page #18
	Page #19
	Page #20
	Page #21
	Page #22
	Page #23

