Stacks

Stack Abstract Data Type (ADT)
Stack ADT Interface

Stack Design Considerations
Stack Applications

Evaluating Postfix Expressions
Introduction to Project 2

Reading: L&C Section 3.2, 3.4-3.8

Stack Abstract Data Type

A stack Is a linear collection where the
elements are added or removed from the
same end

The processing is last in, first out (LIFO)

ne last element put on the stack is the first
element removed from the stack

Think of a stack of cafeteria trays

A Conceptual View of a Stack

Adding an Elemh' /Removmg an Element

Top of Stack

Stack Terminology

We push an element on a stack to add one
We pop an element off a stack to remove one
We can also peek at the top element without
removing it

We can determine Iif a stack Is empty or not
and how many elements it contains (its size)

The StackADT interface supports the above

operations and some typical class operations
such as toString()

Stack ADT Interface

<<interface>>
StackADT<T>

push(element : T) : void
pop O - T
peek(D - T

iIskmpty () : bool
size() :© Int
toString() : String

+ 4+ + + + +

Stack Design Considerations

 Although a stack can be empty, there is no
concept for it being full. An implementation
must be desighed to manage storage space

* For peek and pop operation on an empty
stack, the implementation would throw an
exception. There is no other return value
that Is equivalent to “nothing to return”

* A drop-out stack Is a variation of the stack
design where there is a limit to the number
of elements that are retained

6

Stack Design Considerations

* No iterator method is provided

« That would be inconsistent with restricting
access to the top element of the stack

e |f we need an iterator or other mechanism
to access the elements in the middle or at
the bottom of the collection, then a stack Is
not the appropriate data structure to use

Applications for a Stack

« A stack can be used as an underlying
mechanism for many common applications
— Evaluate postfix and prefix expressions
— Reverse the order of a list of elements
— Support an “undo” operation in an application
— Backtrack in solving a maze

Evaluating Infix Expressions

« Traditional arithmetic expressions are written

In Infix notation (aka algebraic notation)

(operand) (operator) (operand) (operator) (operand)
4 + 5 * 2

 When evaluating an infix expression, we

need to use the precedence of operators

— The above expression evaluatesto4 + (5*2) =14
— NOT in left to right order as written (4 + 5) * 2 =18

* \WWe use parentheses to override precedence

9

Evaluating Postfix Expressions

e Postfix notation Is an alternative method to

represent the same expression
(operand) (operand) (operand) (operator) (operator)

4 5 2 * +
* \When evaluating a postfix expression, we
do not need to know the precedence of
operators

* Note: We do need to know the precedence
of operators to convert an Infix expression
to Its corresponding postfix expression

10

Evaluating Postfix Expressions

* \We can process from left to right as long
as we use the proper evaluation algorithm

* Postfix evaluation algorithm calls for us to:
— Push each operand onto the stack

— Execute each operator on the top element(s)
of the stack (An operator may be unary or
binary and execution may pop one or two
values off the stack)

— Push result of each operation onto the stack

11

Evaluating Postfix Expressions

e Expression=7 4 -3 *15 + /*

o
/*\ : \”/\/*\

12

Evaluating Postfix Expressions

e Core of evaluation algorithm using a stack
while (tokenizer._.hasMoreTokens()) {
token = tokenizer.nextToken(); // returns String
i1IT (1sOperator(token) {
int op2 = (stack.pop(Q)).intvalue(); 7/ Integer
iInt opl = (stack.pop()).-intvalue(); 7/ to iInt
Int res = evalSingleOp(token.charAt(0), opl, op2);
stack.push(new Integer(res));
+
else // String to int to Integer conversion here
stack.push (nhew Integer(lInteger.parseint(token)));
} /7 Note: Textbook’s code does not take advantage of
// Java 5.0 auto-boxing and auto-unboxing 13

Evaluating Postfix Expressions

Instead of this:

Int op2 = (stack.pop()).intvalue(); 7/ Integer to Int
Int opl = (stack.pop()).intvalue(); 7/ Integer to iInt
iInt res = evalSingleOp(token.charAt(0), opl, op2);
Why not this:

int res = evalSingleOp(token.charAt(0),
(stack.pop()) .intvalue(),
(stack.pop()).-intvValue());

In which order are the parameters evaluated?
Affects order of the operands to evaluation

14

Evaluating Postfix Expressions

 The parameters to the evalSingleOp
method are evaluated in left to right order

* The pops of the operands from the stack
occur in the opposite order from the order
assumed in the interface to the method

* Results: Original Alternative
6 3/ =2 6 3/ =0
36/ =0 36/ =2

15

Evaluating Postfix Expressions

 Our consideration of the alternative code
above demonstrates a very good point

* Be sure that your code keeps track of the
state of the data stored on the stack

e Your code must be written consistent with
the order data will be retrieved from the
stack to use the retrieved data correctly

16

Introduction to Project 2

The term fractal was coined by Mandelbrot in 1975
for a geometric shape that has a dimensional order
between the normal 1D, 2D, 3D, etc dimensions

The concept has been used to describe the rough
ragged shape of shorelines and other phenomena

If you measure shoreline length at a large scale, it
IS shorter than If you measure pieces of it at any
smaller scale and add up the lengths

Hence, a shoreline is greater than 1D but obviously
IS still less than 2D

17

Introduction to Project 2

A visual characteristic of a fractal such as a
shoreline is that it has the same appearance
at a large scale as it does when you look at it
at smaller and smaller scales

It repeats the same shape at all scales

The fractal we will be generating in Project 2
IS a repeating sequence of triangles inside of
each triangle — similar to a Sierpinski triangle

See the following figure

18

Introduction to Project 2

" Applet Viewer
Hob Wilson

Position Directions

19

Introduction to Project 2

* You are provided the following code:

Applet.ntml — An html file to launch the applet
(You can use the Appletviewer instead of this)

Corner.Java — Represents the corner of a triangle
and has some useful methods (len and mid)

Triangle.java — Represents a triangle with three
corners and has some code you need to write

lterative.java and Recursive.java — The top level
applets for drawing the sequence of triangles

20

Introduction to Project 2

e Study and understand the provided code

* You need to do the following:

— Write Triangle class getNextLevel() and size()
» Use provided Corner class methods — len and mid

* The getNextLevel method returns one of six possible
Triangle objects based on the index parameter

e The Size method returns the circumference based on
the three Corner objects.

— Write the lterative class drawTriangle method
— Write the Recursive class drawTriangle method

21

Introduction to Project 2

In the iterative drawTriangle method:
— Instantiate a stack to contain Triangle objects
— Push the Triangle t parameter on the stack

— Iterate while the stack Iis not empty
« Remove and draw the Triangle on top of the stack

o Ifitis still larger than Triangle.SMALLEST create and
push its six sub-triangles on the stack

est the Applet
Modify It to use a queue instead of a stack
Test the Applet again 22

Introduction to Project 2

 In the recursive drawTriangle method:

— Draw the Triangle t parameter

— If it is still larger than Triangle. SMALLEST

* Recursively call drawTriangle six times - once with
each of the six sub-triangles of the Triangle t

o Test the Applet

* Write a report on all three Applets versions
(two Iterative and one recursive)

	Page #1
	Page #2
	Page #3
	Page #4
	Page #5
	Page #6
	Page #7
	Page #8
	Page #9
	Page #10
	Page #11
	Page #12
	Page #13
	Page #14
	Page #15
	Page #16
	Page #17
	Page #18
	Page #19
	Page #20
	Page #21
	Page #22
	Page #23

