Queues

* Queue Concept

* Queue Design Considerations

* Queues In Java Collections APIs
* Queue Applications

 Reading L&C 5.1-5.8, 9.3

Queue Abstract Data Type

* A queue Is a linear collection where the
elements are added to one end and
removed from the other end

* The processing Is first in, first out (FIFO)

* The first element put on the queue is the
first element removed from the queue

* Think of a line of people waiting for a bus
(The British call that “queuing up”)

A Conceptual View of a Queue

Rear of Queue Front of Queue
(or Tail) (or Head)

Adding an Element @ @ Removing an Element

Queue Terminology

We enqueue an element on a queue to add one
We dequeue an element off a queue to remove one
We can also examine the first element without
removing it

We can determine if a queue iIs empty or not and
how many elements it contains (its size)

The L&C QueueADT interface supports the above

operations and some typical class operations such
as toString ()

Queue Design Considerations

« Although a queue can be empty, there is no
concept for it being full. An implementation
must be designhed to manage storage space

 For first and dequeue operation on an

empty queue, this implementation will throw
an exception

« Other implementations could return a value
null that is equivalent to "nothing to return”

5

The java.util.Queue Interface

The java.util.Queue Interface Is in the Java
Collections API (extends Collection)

However, it Is only an interface and you
must use an implementing class

LinkedLIist is the most commonly used
Implementing class

For a queue of type objects:

Queue<type> myQueue = new LinkedList<type>():;

The java.util.Queue Interface

The names of the methods are different
Enqueue is done using:

boolean offer (T element) // returns false if full

Dequeue Is done using either:

T poll() // returns null value if empty
T remove () // throws an exception 1f empty
Peek Is done using either:

T peek() // returns null value if empty

T element () // throws an exception 1f empty

Applications for a Queue

* A queue can be used as an underlying
mechanism for many common applications
— Cycling through a set of elements in order
— Simulation of client-server operations
— Radix Sort

— Scheduling processes in an operating system
such as printer queues

Cycling through Code Keys

The Caesar cipher Is simple letter shifting

Each letter Is treated as its number 0-25 In
the alphabet and each letter is encoded as:

cipher value = (letter value + constant) % 26

The message Is decoded letter by letter:
letter value = (cipher value — constant) % 26
If (letter value < 0) letter value += 26

Using the constant 7, the word “queue”
would be coded as “xblbl”

Note: the word’s “pattern” is recognizable

Cycling through Code Keys

The Caesar cipher Is easy to solve because
there are only 26 possible “keys” to try

It can be made harder by cycling through a
key set of values suchas 3,1, 7,4, 2,5

We put that sequence of numbers in a queue

As we encode each letter, we dequeue a
number for the constant and re-enqueue it -
cycling through the entire key set as many
times as needed for the message length

10

Cycling through Code Keys

Using that queue of numbers as the constant

values, the word “queue” becomes “tvlyg”
Note: the word’s “pattern” is not recognizable

If we are encoding a message containing the
entire Unicode character set, we can omit the
modulo 26 operator as in the text book code

See L&C, Listing 5.1

11

Ticket Counter Simulation

See L&C Listing 5.2 and 5.3

The simulation In this example sets up a
gueue with each customer arriving at
regular 15 second intervals

This Is not a very meaningful analysis
because it doesn’t take into account the
typical variations in arrival rates

E.G. One customer every 15 seconds could

mean 8 customers arriving at one time and

then 2 minutes with no arriving customers
1

2

Ticket Counter Simulation

* Textbook code always gives same values:

cashiers time
1 5317
2325
1332
840
547
355
219
120
120
120

© 00 N O O & WDIN

=
o

13

Ticket Counter Simulation

* A more sophisticated simulation would use
probability distributions for the arrival rate
and for the processing time
— With an average serving time that sets a

maximum capacity for handling customers
based on the number of servers

— And an average arrival time with parameters
for the distribution of arrivals over time

A statistical analysis is more important for
an ice cream shop next to a movie theater
(during a movie versus as a movie lets out)

Ticket Counter Simulation

* Poisson Distribution is commonly used for
estimating arrival times In simulations

— Lambda is the b

L o \=1
average number gzz | o X4 .
qf arr_lvals per Joas| | o A=10
time interval $0.20f |pa

—P(X=k)isthe “ois ¢ *
orobability that ~ °2r /| %o
<is the number %[/ & ° J
of arrivals during " 0
this time interval 15

Ticket Counter Simulation

* Replacement for textbook code In listing 5.3:

/** load customer queue
improved to use random Poisson arrival times*/
Poisson myDist = new Poisson(lambda) ;
for (int count=0; count < NUM INTERVALS / lambda; count++)
{
int numberOfCustomers = myDist.getValue() ;
for (int 1 = 0; i < numberOfCustomers; i++)

customerQueue.offer (new Customer (count*l15*lambda)) ;

}

* Introduces random arrival times based on the
Poisson distribution for each time interval

16

Ticket Counter Simulation

* For a Markov/Markov/1 (M/M/1) process
(one gueue and one server), the expected
waiting time can be calculated in closed form

Waiting Time = Service Time / (1 — load/capacity)

* This produces a graph of waiting time versus
load/capacity with infinite waiting time at load
equal to 100% or more of capacity

17

Ticket Counter Simulation

Waiting Time versus Load / Capacity
1400

1200
1000
800
600
400

200

Radix Sort

Main Line
Switch

Sorting

IBM Card Sorter

Feed Hopper

Selection
Switches

Start ond
Stop Keys

(3]
]

(o]

APS INSTRUCTI

Card Reader Service for 80-Coluran IBM Punch Cards http://PunchCardReader.com
BAD D R AE B O BED B AN ED OAN WD R GNEM R O G OER AR D AERD D W 0@

o m L1 B B | im o i 0 o aa i

nlnnn |'|'|'n(nxu'|v‘n oonofooofoosoonocoscfoosofoocfocno nrrn-nnlnﬂrqqn|nxnnn|

x|| 1|.1 1 |:|1|.1|"w|'x|”1x|"|1i|l|1[|'1<|.n|||x‘l|1>|'|‘1”||'|1‘||' |1|||11||||
Bzz222272220227222222222220222022222222222022022222Q2222222222202222022222:212
BRY EEERESERET EERERERT ERER] ERRI EEFEE] FERERR] ERERER] PERREREEE] EEREEERERERE] FERY BER]
IEEREEERERRE AR EY EERERREY EEREREREY ERRERERT EXRY ERYERERERER] EXERREY] EXRT EERRRE] EXFY |
= Bslsss UEEEEY BEY | EERR1 ERERE] BREET BERE RN EREEET K1 E31 BER1 E1 EREEE] BRE K1 B1 B3 EREEH
566650s66665666ls666WelssosPe65P6c65665656CP6S666666H665666666656666665666656[6¢
MmN
R R EERRRERREREY R BN ERREY ERRE] EXRd B3 | EEREd R | ERERT ERAL E1 | RERE] EXAE] | LERE]
$5999539299393939N99595923393999959389359595893993993939059399390993§9999999999339%

19

Radix Sort - Algorithm

« See L&C Listing 9.3
 Like the old IBM punched card sorters

Original List
l l 1. Sort into Queues by Radix l
QO 01 * * % Q10
I l

2. Empty Each Queue in Order and Add to List

