
1

Queues

• Queue Concept

• Queue Design Considerations

• Queues in Java Collections APIs

• Queue Applications

• Reading L&C 5.1-5.8, 9.3

2

Queue Abstract Data Type

• A queue is a linear collection where the

elements are added to one end and

removed from the other end

• The processing is first in, first out (FIFO)

• The first element put on the queue is the

first element removed from the queue

• Think of a line of people waiting for a bus

(The British call that “queuing up”)

3

A Conceptual View of a Queue

Rear of Queue

(or Tail)

Adding an Element Removing an Element

Front of Queue

(or Head)

4

Queue Terminology

• We enqueue an element on a queue to add one

• We dequeue an element off a queue to remove one

• We can also examine the first element without

removing it

• We can determine if a queue is empty or not and

how many elements it contains (its size)

• The L&C QueueADT interface supports the above

operations and some typical class operations such
as toString()

5

Queue Design Considerations

• Although a queue can be empty, there is no

concept for it being full. An implementation

must be designed to manage storage space

• For first and dequeue operation on an

empty queue, this implementation will throw

an exception

• Other implementations could return a value
null that is equivalent to “nothing to return”

6

The java.util.Queue Interface

• The java.util.Queue interface is in the Java

Collections API (extends Collection)

• However, it is only an interface and you

must use an implementing class

• LinkedList is the most commonly used

implementing class

• For a queue of type objects:
Queue<type> myQueue = new LinkedList<type>();

7

The java.util.Queue Interface

• The names of the methods are different

• Enqueue is done using:
boolean offer(T element) // returns false if full

• Dequeue is done using either:
T poll() // returns null value if empty

T remove() // throws an exception if empty

• Peek is done using either:
T peek() // returns null value if empty

T element() // throws an exception if empty

8

Applications for a Queue

• A queue can be used as an underlying

mechanism for many common applications

– Cycling through a set of elements in order

– Simulation of client-server operations

– Radix Sort

– Scheduling processes in an operating system

such as printer queues

9

Cycling through Code Keys

• The Caesar cipher is simple letter shifting

• Each letter is treated as its number 0-25 in
the alphabet and each letter is encoded as:

cipher value = (letter value + constant) % 26

• The message is decoded letter by letter:

letter value = (cipher value – constant) % 26

if (letter value < 0) letter value += 26

• Using the constant 7, the word “queue”
would be coded as “xblbl”

• Note: the word’s “pattern” is recognizable

10

Cycling through Code Keys

• The Caesar cipher is easy to solve because

there are only 26 possible “keys” to try

• It can be made harder by cycling through a

key set of values such as 3, 1, 7, 4, 2, 5

• We put that sequence of numbers in a queue

• As we encode each letter, we dequeue a

number for the constant and re-enqueue it -

cycling through the entire key set as many

times as needed for the message length

11

Cycling through Code Keys

• Using that queue of numbers as the constant

values, the word “queue” becomes “tvlyg”

• Note: the word’s “pattern” is not recognizable

• If we are encoding a message containing the

entire Unicode character set, we can omit the

modulo 26 operator as in the text book code

• See L&C, Listing 5.1

12

Ticket Counter Simulation

• See L&C Listing 5.2 and 5.3

• The simulation in this example sets up a
queue with each customer arriving at
regular 15 second intervals

• This is not a very meaningful analysis
because it doesn’t take into account the
typical variations in arrival rates

• E.G. One customer every 15 seconds could
mean 8 customers arriving at one time and
then 2 minutes with no arriving customers

Ticket Counter Simulation

• Textbook code always gives same values:
cashiers time

1 5317

2 2325

3 1332

4 840

5 547

6 355

7 219

8 120

9 120

10 120

13

14

Ticket Counter Simulation

• A more sophisticated simulation would use
probability distributions for the arrival rate
and for the processing time

– With an average serving time that sets a
maximum capacity for handling customers
based on the number of servers

– And an average arrival time with parameters
for the distribution of arrivals over time

• A statistical analysis is more important for
an ice cream shop next to a movie theater
(during a movie versus as a movie lets out)

Ticket Counter Simulation

• Poisson Distribution is commonly used for

estimating arrival times in simulations

– Lambda is the

average number

of arrivals per

time interval

– P(X=k) is the

probability that

k is the number

of arrivals during this rv

this time interval 15

Ticket Counter Simulation

• Replacement for textbook code in listing 5.3:

/** load customer queue

improved to use random Poisson arrival times*/

Poisson myDist = new Poisson(lambda);

for (int count=0; count < NUM_INTERVALS / lambda; count++)

{

int numberOfCustomers = myDist.getValue();

for (int i = 0; i < numberOfCustomers; i++)

customerQueue.offer(new Customer(count*15*lambda));

}

• Introduces random arrival times based on the

Poisson distribution for each time interval
16

Ticket Counter Simulation

• For a Markov/Markov/1 (M/M/1) process

(one queue and one server), the expected

waiting time can be calculated in closed form

Waiting Time = Service Time / (1 – load/capacity)

• This produces a graph of waiting time versus

load/capacity with infinite waiting time at load

equal to 100% or more of capacity
17

Ticket Counter Simulation

18

0

200

400

600

800

1000

1200

1400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Waiting Time versus Load / Capacity

Radix Sort - IBM Card Sorter

19

20

Radix Sort - Algorithm

• See L&C Listing 9.3

• Like the old IBM punched card sorters

* * *

Original List

1. Sort into Queues by Radix

2. Empty Each Queue in Order and Add to List

Q0 Q1 Q10

