
1

Queues (Continued)

• Queue ADT

• Linked queue implementation

• Array queue implementation

• Circular array queue implementation

• Deque

• Reading L&C 5.1-5.8, 9.3

QueueADT and Queue Classes

2

<<interface>>

Iterable<T>

+ iterator : Iterator<T>

<<interface>>

QueueADT<T>

+ enqueue (element : T) : void

+ dequeue () : T

+ first() : T

+ isEmpty() : boolean

+ size() : int

+ toString() : String

<<extends>>

CircularArrayQueue<T> LinkedQueue<T>

<<implements>>

Since the Java Collections

all extend Iterable<T>, I have

added that to all my versions

of the textbook examples

Each implementing class

satisfies the ADT although

they each use a different

internal data structure

3

Linked Queue Implementation

• We can use the same LinearNode class that

we used for LinkedStack implementation

• We use attribute names “front” and “rear” to

have a meaning consistent with a queue

Object of type T

front

LinearNode next;

T element;

Object of type T

LinearNode next;

T element;

null

count integer

Object of type T

LinearNode next;

T element;

rear

4

Linked Queue Implementation

• enqueue – O(1)
public void enqueue (T element)

{

LinearNode<T> node = new LinearNode<T>(element);

if (isEmpty())

front = node;

else

rear.setNext(node);

rear = node;

count++;

}

• Note the difference between the enqueue
method and the stack push method

5

Linked Queue Implementation

• dequeue – O(1)
public T dequeue () throws EmptyQueueException

{

if (isEmpty()) throw new EmptyQueueException();

T result = front.getElement();

front = front.getNext(); // may create garbage

if (--count == 0)

rear = null; // finishes creating garbage

return result;

}

• Note the difference between the dequeue
method and the stack pop method

6

Array Queue Implementation

• We can use an array of elements as a queue

• The front is implicitly index 0 and rear is the

index of next available element in the array

• Variable “rear” is also used for count

Object of type T Object of type T nullT [] queue

rear integer

7

Array Queue Implementation

• enqueue – O(1)
public void enqueue (T element)

{

if (size() == queue.length)

expandCapacity();

queue[rear++] = element;

}

• expandCapacity is similar to private helper

method used in ArraySet and Stack classes

8

Array Queue Implementation

• dequeue() – O(n)
public T dequeue() throws EmptyQueueException

{

if (isEmpty())

throw new EmptyStackException();

T result = queue[0];

rear--;

for (int scan = 0; scan < rear; scan++)

queue[scan] = queue[scan + 1];

queue[rear] = null; // stale alias

return result;

}

9

Array Queue Implementation

• Notice that the dequeue is O(n) due to the
shifting of the elements in the array queue
after the 0th element has been copied out

• This introduces a potential performance
problem that we would like to avoid

• Using the 0th element of the array as the
rear of the queue doesn’t solve the problem
– just moves it to the enqueue operation

• With a better design, we can avoid it

10

Circular Array Queue Implementation

• This design eliminates the shifting of the
elements as part of the dequeue operation

• Commonly called circular buffering

• We keep an integer for both the front and
rear of the queue in the array and never
shift the elements in the array

• When we increment either front or rear to
the length of the array, we do not expand
the capacity. We set them back to zero to
reuse the lower elements in the array

11

Circular Array Queue Implementation

0
1

2
N-2

N-1

3

4

5
6

front 3

rear 7

count 4

7

12

Circular Array Queue Implementation

0
1

2
N-2

N-1

3

4

5
6

front

2rear

N-2

count 4

7

13

Circular Array Queue Implementation

• Method enqueue can not use:
rear++;

• Method dequeue can not use:
front++;

• To increment rear, enqueue must use:
rear = (rear + 1) % queue.length;

• To increment front, dequeue must use:
front = (front + 1) % queue.length;

14

Circular Array Queue Implementation

• When the front catches up to the rear (a

snake eating its own tail?), our code must

expand the capacity of the array (replacing

the original array with a larger one)

• When our code expands the capacity, it

must cycle through the original array from

front index to rear index value as it copies

from the smaller array to the larger array

• Then, it sets new values for front and rear

Queue Class Iterators

• Again, we need to provide an iterator method

and an Iterator class (best implemented as

an inner class)

• We want the iterator to provide the elements

in the order of the queue from front to rear

• This would be:

– For a LinkedQueue: The same order as for a

LinkedStack’s Iterator (Code not shown here)

– For a CircularArrayQueue: Opposite of the order

as for the ArrayStack’s Iterator classes 15

16

ArrayIterator Class

• The iterator method for each Queue class

instantiates and returns a reference to a new

ArrayIterator object to its caller

• Any iterator class is closely related to its

collection class so it is a good candidate for

implementation as an inner class

• As an inner class, the ArrayIterator code can

access the array and front/rear variables of the

instance of the outer class that instantiated it

17

ArrayIterator Definition/Attributes

• Class Definition/Attribute Declarations

(implemented as an inner class)
private class ArrayIterator<T>

implements Iterator<T>

{

private int current;

• Constructor:
public ArrayIterator()

{

current = front; // start at front for FIFO

}

18

ArrayIterator Methods

• hasNext – O(1)
public boolean hasNext()

{

return current != rear; // outer class variable

}

• next – O(1)
public T next()

{

if (!hasNext())

throw new NoSuchElementException();

T result = queue[current]; // outer class array

current = (current + 1) % queue.length;

return result;

}

Deque

• A Deque (pronounced like “deck”) is a data

structure that is a double ended queue

• It can be used as either a stack or a queue

depending on the methods your code uses

• Look at the Deque class in the Java APIs

• Note the name of each method and what it

does to use a Deque data structure correctly

(the names are not the traditional ones)

19

Deque

• If we use a Deque for our traceback stack

instead of a Stack, we could add into it as a

stack and then remove from it as a queue

• Then we wouldn’t need to use another stack

to reverse the order of the elements in order

to print them from first to last

• If you want, try a Deque instead of a Stack or

Queue in one of our labs or projects

20

