
1

Recursion

• Recursive Thinking

• Recursive Programming

• Recursion versus Iteration

• Direct versus Indirect Recursion

• More on Project 2

• Reading L&C 7.1 – 7.2

2

Recursive Thinking

• Many common problems can be stated in

terms of a “base case” and an “inferred

sequence of steps” to develop all examples

of the problem statement from the base case

• Let’s look at one possible definition of a

comma separated values (.csv) list:

– A list can contain one item (the base case)

– A list can contain one item, a comma, and a list

(the inferred sequence of steps)

3

Recursive Thinking

• The above definition of a list is recursive
because the second portion of the definition
depends on there already being a definition
for a list

• The second portion sounds like a circular
definition that is not useful, but it is useful
as long as there is a defined base case

• The base case gives us a mechanism for
ending the circular action of the second
portion of the definition

4

Recursive Thinking

• Using the recursive definition of a list:

A list is a: number

A list is a: number comma list

• Leads us to conclude 24, 88, 40, 37 is a list

number comma list

24 , 88, 40, 37

number comma list

88 , 40, 37

number comma list

40 , 37

number

37

5

Recursive Thinking

• Note that we keep applying the recursive

second portion of the definition until we

reach a situation that meets the first portion

of the definition (the base case)

• Then we apply the base case definition

• What would have happened if we did not

have a base case defined?

6

Infinite Recursion

• If there is no base case, use of a recursive

definition becomes infinitely long and any

program based on that recursive definition

will never terminate and produce a result

• This is similar to having an inappropriate

or no condition statement to end a “for”,

“while”, or “do … while” loop

7

Recursion in Math

• One of the most obvious math definitions
that can be stated in a recursive manner is
the definition of integer factorial

• The factorial of a positive integer N (N!) is
defined as the product of all integers from
1 to the integer N (inclusive)

• That definition can be restated recursively

1! = 1 (the base case)

N! = N * (N – 1)! (the recursion)

8

Recursion in Math

• Using that recursive definition to get 5!

5! = 5 * (5-1)!

5! = 5 * 4 * (4-1)!

5! = 5 * 4 * 3 * (3-1)!

5! = 5 * 4 * 3 * 2 * (2-1)!

5! = 5 * 4 * 3 * 2 * 1! (the base case)

5! = 5 * 4 * 3 * 2 * 1

5! = 120

9

Recursive Programming

• Recursive programming is an alternative
way to program loops without using “for”,
“while”, or “do … while” statements

• A Java method can call itself

• A method that calls itself must choose to
continue using either the recursive definition
or the base case definition

• The sequence of recursive calls must make
progress toward meeting the definition of
the base case

10

Recursion versus Iteration

• We can calculate 5! using a loop
int fiveFactorial = 1;

for (int i = 1; i <= 5; i++)

fiveFactorial *= i;

• Or we can calculate 5! using recursion
int fiveFactorial = factorial(5);

. . .

private int factorial(int n)

{

return n == 1? 1 : n * factorial(n – 1);

}

11

Recursion versus Iteration

factorial(5)

main

factorial

factorial

factorial

factorial

factorial

factorial(4)

factorial(3)

factorial(2)

factorial(1)

return 1

return 2

return 6

return 24

return 120

12

Recursion versus Iteration

• Note that in the “for” loop calculation, there is
only one variable containing the factorial
value in the process of being calculated

• In the recursive calculation, a new variable n
is created on the system stack each time the
method factorial calls itself

• As factorial calls itself proceeding toward the
base case, it pushes the current value of n-1

• As factorial returns after the base case, the
system pops the now irrelevant value of n-1

13

Recursion versus Iteration

• Note that in the “for” loop calculation, there

is only one addition (i++) and a comparison

(i<=5) needed to complete each loop

• In the recursive calculation, there is a

comparison (n==1) and a subtraction (n -

1), but there is also a method call/return

needed to complete each loop

• Typically, a recursive solution uses both

more memory and more processing time

than an iterative solution

14

Direct versus Indirect Recursion

• Direct recursion is when a method calls itself

• Indirect recursion is when a method calls a

second method (and/or perhaps subsequent

methods) that can call the first method again

method1 method2 method3

method1 method2 method3

method1 method2 method3

15

Calling main() Recursively

• Any Java method can call itself

• Even main() can call itself as long as

there is a base case to end the recursion

• You are restricted to using a String []

as the parameter list for main()

• The JVM requires the main method of a

class to have that specific parameter list

16

Calling main() Recursively
public class RecursiveMain

{

public static void main(String[] args)

{

if (args.length > 1) {

String [] newargs = new String[args.length - 1];

for (int i = 0; i < newargs.length; i++)

newargs[i] = args[i + 1];

main(newargs); // main calls itself with a new args array

}

System.out.println(args[0]);

return;

}

}

java RecursiveMain computer science is fun

fun

is

science

computer

17

More on Project 2

• The Recursive class for project 2 needs a
recursive drawTriangle() method

• You don’t need an explicit stack

• When drawTriangle() calls itself:

– the current context of all local variables is left on

the system stack and

– a new context for all local variables is created on

the top of the system stack

• The return from drawTriangle() pops the

previous context off the system stack

More on Project 2

18

T1 T1 T1 T1

T1.1 T1.1 T1.1

T1.1.1 T1.1.2

• System Stack (for 3 triangles and 3 levels)

More on Project 2

• System Stack (for 3 triangles and 3 levels)

19

T1

T1.1

T1.1.3

T1

T1.2

T1

T1.2

T1.2.1

T1

T1.2

T1.2.2

More on Project 2

• System Stack (for 3 triangles and 3 levels)

20

T1

T1.2

T1.2.3

T1

T1.3

T1

T1.3

T1.3.1

T1

T1.3

T1.3.2

More on Project 2

• System Stack (for 3 triangles and 3 levels)

21

T1

T1.3

T1.2.3

