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Trees

• Tree nomenclature

• Implementation strategies

• Traversals

– Depth-first

– Breadth-first

• Implementing binary trees

• Reading: L&C 9.1 – 9.7
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Tree Nomenclature

• A tree is a non-linear structure in which elements 

are organized into a hierarchy

• A tree has levels of nodes connected by edges

• Each node is at a level in the tree

• The root node is the one node at the top level

• Nodes are children of nodes at higher levels

• Nodes with the same parent node are siblings

• A leaf is a node with no children
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Tree Nomenclature

• A path exists from the root to any node or leaf 

• A node is the ancestor of another node if it is on 

the path between the root and the other node

• A node that can be reached along a path away 

from the root is a descendant

• The level of a node is the length of the path 

(number of edges) from the root to the node

• The height of a tree is the length of the longest 

path from the root to a leaf
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Tree Nomenclature

• A tree is considered to be balanced if all of the 
leaves are at the same level or within one level 
of each other 

• A tree is considered to be complete if it is 
balanced and all the leaves on the bottom level 
are on the left

• A tree is considered full if all leaves of the tree 
are at the same level and every node is either a 
leaf or has exactly n children

• The height of a balanced, complete, or full tree 
that contains N elements is logn N
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Tree Nomenclature

• The order of a tree is an important characteristic 

• It is based on the maximum number of children a 

node can have

– There is no limit in a general tree

– An n-ary tree has a limit of n children per node

– A binary tree has exactly two children per node

• The maze in Project 4 will be a “tri-nary” tree

• Binary trees are often useful, so we’ll concentrate 

on them in the rest of this course
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Implementation Strategies

• The computational strategy for an array

• In a binary tree, for any element stored in the 

array in position n, we consider:

– its left child to be stored in position:   2*n + 1

– its right child to be stored in position: 2*(n + 1)

• This is a simple numerical index mapping and 

can be managed by adding capacity as needed

• Its disadvantage is that it may waste memory

• If the tree is not complete or nearly complete, 

the array may have many empty elements
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Implementation Strategies

• The simulated link strategy for an array

• In a binary tree, each element of the array is an 
object with a reference to a data element and an 
int index for each of its two children

• A new child is always added to the end of the 
contiguous storage area in the array to avoid 
wasting space

• However, there is increased overhead to remove 
an element from the array (to shift the remaining 
elements and alter index values as required)
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Implementation Strategies

• For a binary tree, the linked strategy uses a node 
class containing a reference to the data and a left 
and a right reference to two child nodes
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Traversals

• Types of traversals

– Pre-order (Depth first)

• Visit node, traverse left child, traverse right child

– In-order (Depth first)

• Traverse left child, visit node, traverse right child

– Post-Order (Depth first)

• Traverse left child, traverse right child, visit node

– Level-order (Breadth first)

• Visit all the nodes at each level, one level at a time
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Traversals
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Pre-order traversal would give:

A, B, D, E, C

In-order traversal would give:

D, B, E, A, C

Post-order traversal would give:

D, E, B, C, A

Level-order Traversal would give:

A, B, C, D, E
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Level-order Traversal

• A possible algorithm for level-order traversal

Create a queue called nodes

Create an unordered list called results

Enqueue a reference to the root node onto the nodes queue

While the nodes queue is not empty

Dequeue the first element

If it is not null

add it to the rear of the results list

Enqueue the children of the element on the nodes queue

Else

Add null to the rear of the results list

Return an iterator for the results list
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Implementing Binary Trees

• A possible interface definition is provided 
that can be used on any binary tree 
regardless of the purpose of the tree

• Note: There is no method for adding an 
element or removing an element yet

• Until we know more about the purpose of 
the tree, those operations can’t be defined

• We will use a less general (child) interface 
for a binary search tree and a heap later



15

Implementing Binary Trees
<<interface>>

BinaryTreeADT<T>

+ removeLeftSubtree( ) : void

+ removeRightSubtree( ) : void

+ removeAllElements( ) : void

+ isEmpty( ) : boolean

+ size( ) : int

+ contains( ) : boolean

+ find( ) : T

+ toString( ) : String

+ iteratorInOrder( ) : Iterator<T>

+ iteratorPreOrder( ) : Iterator<T>

+ iteratorPostOrder( ) : Iterator<T>

+ iteratorLevelOrder( ) : Iterator<T>

Note: toString is missing in L&C Fig 9.9 

LinkedBinaryTree<T>

# count : int

# root : BinaryTreeNode

{Three constructors

as shown in text}
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Implementing Binary Trees

• Here we use a BinaryTreeNode in a linked 
strategy for our implementation

• Note: L&C code allows “package” access to 
the BinaryTreeNode attributes - not accessor 
methods as would be better O-O practice

BinaryTreeNode<T>

# element : T

# left : BinaryTreeNode

# right : BinaryTreeNode

+ BinaryTreeNode (obj : T)

+ numChildren ( ) : int
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Implementing Binary Trees

• Three constructors for convenience:

– One to instantiate an empty tree

– One to instantiate a tree with one root node

– One to instantiate a tree with a root node and 

left and right child nodes from existing trees

• In normal methods for processing a binary 

tree, it is useful to use recursive algorithms
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Implementing Binary Trees

• BinaryTreeNode method to get number of children
public int numChildren()

{

int children = 0;

if (left != null)

children = 1 + left.numChildren();

if (right != null)

children += 1 + right.numChildren();

return children;

}

• Note: Usual strategy of keeping a count attribute 

doesn’t work well since if we add a child to a node, 

we need to go back to all parent nodes to update 
the count attribute in each of them
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Implementing Binary Trees

• LinkedBinaryTree remove left sub-tree method
public void removeLeftSubtree()

{ // Note: uses methods instead of package access

if (root.getLeft() != null)

count = count – root.getLeft().numChildren() – 1;

root.setLeft(null);    // creates garbage!

}

• The Java garbage collection approach saves 
coding effort here

• In languages like C++, the last line would be a 
“memory leak”

• This method would be much more complex to 
implement - needing to release objects’ memory
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Implementing Binary Trees

• LinkedBinaryTree method to find target
private BinaryTreeNode<T> findagain (T target, 

BinaryTreeNode<T> next)

{ // Note: uses methods instead of package access

if (next == null)

return null;

if (next.getElement().equals(target))

return next;

BinaryTreeNode<T> temp = findagain(target, 

next.getLeft());

if (temp == null)

temp = findagain(target, next.getRight());

return temp;

}
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Implementing Binary Trees

• LinkedBinaryTree method iteratorInOrder()
public Iterator<T> iteratorInOrder()

{

ArrayList<T> list = new ArrayList<T>();

inOrder (root, list);

return list.iterator();

}

private void inorder(BinaryTreeNode<T> node, 

ArrayList<T> list)

{  // Note: uses methods instead of package access

if (node != null) {

inorder(node.getLeft(), list);

list.add(node.getElement());

inorder(node.getRight(), list);

}


