
1

Binary Search Trees

• Implementing Balancing Operations

– AVL Trees

– Red/Black Trees

• Hash Tables

• Reading: 11.5-11.6, Appendix E

2

Implementing Balancing Operations

• Knowing rotations, we must know how to detect that

the tree needs to be rebalanced and which way

• There are 2 ways for tree to become unbalanced

– By insertion of a node

– By deletion of a node

• There are two mechanisms for detecting if a rotation

is needed and which rotation to perform:

– AVL Trees

– Red/Black Trees

• It is best for both to have a parent reference in each

child node to backtrack up the tree easily

3

Implementing Balancing Operations

• AVL trees (after Adel’son-Vel’ski and Landis)

keep a balance factor attribute in each node that

equals the height of the right sub-tree minus the

height of the left sub-tree

• Each time an insertion or deletion occurs:

– The balance factors must be updated

– The balance of the tree must be checked from the point

of change up to and including the root

• If a node’s balance factor is > +1 or < -1, the sub-

tree with that node as root must be rebalanced

4

• If the balance factor of a node is -2

– If the balance factor of its left child is -1 or zero*
• Perform a right rotation

– If the balance factor of its left child is +1
• Perform a leftright rotation

• If the balance factor of a node is +2

– If the balance factor of its right child is +1 or zero*
• Perform a left rotation

– If the balance factor of its right child is -1
• Perform a rightleft rotation

Note: Error in L&C on page 315 zero is not mentioned,

but zero can happen in some cases of remove operations

Implementing Balancing Operations

5

AVL Tree Right Rotation

7 (-1)

5 (0) 9 (0)

6 (0)3 (0)

7 (-2)

5 (-1) 9 (0)

6 (0)3 (-1)

1 (0)

Initial Tree After Add 1

Node is -2

Left Child is -1

6

AVL Tree Right Rotation

5 (0)

3 (-1) 7 (0)

6 (0)1 (0) 9 (0)

After Right Rotation

7

AVL Tree Rightleft Rotation

10 (1)

5 (-1) 15 (-1)

13 (-1)3 (0) 17 (0)

Initial Tree After Remove 3

11 (0)

10 (2)

5 (0) 15 (-1)

13 (-1) 17 (0)

11 (0)

Node is +2

Right Child is -1

Remove

8

AVL Tree Rightleft Rotation

After Right Rotation After Left Rotation

10 (2)

5 (0) 13 (1)

11 (0) 15 (1)

17 (0)

13 (0)

10 (0) 15 (1)

11 (0) 17 (0)5 (0)

9

AVL Tree Right Rotation

7 (-1)

5 (0) 9 (0)

6 (0)3 (0)

7 (-2)

5 (0)

6 (0)3 (0)

Initial Tree After Remove 9

Node is -2

Left Child is zero!

Note: This is the case that the L&C text misses in its discussion and examples

10

AVL Tree Right Rotation

5 (+1)

3 (0) 7 (-1)

6 (0)

After Right Rotation

Note: This is the case that the L&C text misses in its discussion and examples

11

Red/Black Trees

• Red/Black Trees (developed by Bayer and
extended by Guibas and Sedgewick) keep a
“color” red or black for each node in the tree

• This approach is used in the Java class library
binary search tree classes

• The maximum height of a Red/Black tree is
roughly 2*log n (not as well controlled as an
AVL tree), but the height is still O(log n)

• The rules for insert, delete, and rebalance are
more complicated than our textbook section
covers, so we won’t study this technique

Hash Tables

• Binary search trees can be used for both

sorting in O(N log N) time and searching in

O(log N) time

• However, if you have an application that

requires only searching but not sorting, a

hash table is a data structure that provides

O(1) performance for searching

• A hash table optimizes time performance

at the expense of using more memory
12

Hash Tables

• Some programming languages include direct

language support for hash tables - such as

PERL (hashes) and Python (dictionaries)

• Java does not - hash tables are implemented

in library classes such as HashMap<K,V> or

you can write a class yourself if necessary

• You should understand how to implement a

hash table in any language such as C where

there is no language or library support
13

Hash Tables

• The base of a hash table can be an array

• A hash function operates on the search key

to produce an integer index into the array

• All data elements whose hash of their keys

result in the same index are stored starting

at that position in the array

• Essentially, a hash table is structured like a

comb with a long “spine” and short “teeth”

• Only a few elements start at the same index
14

Hash Tables

• In Java, one reasonable way to implement a

hash table is with a parameterized class that

encapsulates an array of ArrayList<K> objects

ArrayList<K> hashTable = new ArrayList<K>();

Hash Value hashTable ArrayList(s)

for key K1 as

an index to

one ArrayList

15

. . . K1 . . .

Hash Tables

• To add an element, the add method:

– Hashes the key to get an index into the table

– Instantiates an ArrayList (if needed)

– Adds the key object to that ArrayList

• To find an element, the find method:

– Hashes the key to get an index into the table

– If there is no ArrayList there, it returns not found

– It searches the ArrayList to find the Key

– If the Key is not there, it returns not found
16

Hash Tables

• The hash table lookup is faster because a

search quickly finds the correct ArrayList

which is short for searching relative to N

• If as you add elements to the Hash Table

the ArrayLists get too large, you need to

expand the capacity of the array as we did

previously for stacks and queues and then

rehash every key into the new larger array

with new ArrayLists
17

Hash Functions

• The hashing function is critical for random

distribution of the key elements

• For example, if your keys are telephone

numbers in Massachusetts, using the first 3

digits (the area codes) would be a poor

choice because there are only a few area

codes in use in the state (“clustering”)

• The last 4 digits would be a better choice,

but is still not ideal because the array size

must be 10,000 (not a prime number) 18

Hash Functions

• The mathematics don’t work well unless the

array size is a prime number (P)

• A better choice would be to select a prime

number for the size of the array and use the

whole phone number modulo the array size

to get an array index from 0 to P-1

• If you need to expand the array capacity,

you can’t just double the size of the array

because that would not be a prime number
19

Hash Functions

• Implementing a good hash function is not easy

• There is a hashCode() method in the Object

class that is the parent class of all classes

• Although it is not considered to generate the

best hash codes, you should probably use it if

you don’t know how to generate a good one

yourself

20

