Sets and Maps

Sets
Maps
The Comparator Interface

Sets and Maps in Java Collections API
— TreeSet
— TreeMap

Review for Exam
Reading: 13.1-13.6



Sets

e Asetis acollection of elements with no
duplicates

 We had a set application in Lab 3 where we
needed a data structure to represent a drum
full of Bingo balls for random drawing

* Since there should only be one Bingo ball with
each number, the correct type of collection is
a set



Maps

A map is a collection t
relationship between

The implementation s

nat establishes a
ceys and values

hould provide an efficient

way to retrieve a value given its key

There must be a one-to-one mapping from a key
to a value — each key must have only one value,
but multiple keys can have the same value

Therefore, there isn’t necessarily a one-to-one

mapping from a value

to a key



Map Entry Class

* To implement a map collection using any data
structure, we need a class for objects that link
a key with its corresponding value

MappingClass<K,V> Entry<K,V>
{some data structure <> - key : K
containing Entry objects} -value : V
+ normal Map methods + Entry(key : K, value : V)
+ usual setters/getters

KeyClass ValueClass




Map Entry Class

* The Entry class is not used outside its Map class

* The Entry class code is usually written as an
inner class of the Map class that it supports



The Comparator Interface

In the Java Collections API, either the Comparator or
Comparable interface may be used

A Comparator class object can be passed to the
collection class’s constructor to use in comparing

The Comparator’s “compare” method takes two
objects as parameters and returns a value like the
Comparable compareTo method does (<0, 0, or >0
representing <, ==, or >)

The compare method is not implemented within the
key class but uses two objects of that class



The Comparator Interface

* Implementing a Comparator for Strings that uses their
length as the basis for the comparison
public class StringComparator

implements Comparator<String>

public i1nt compare (String sl, String s2)

{
return sl.length() - sZ2.length();



Java Collections API:
Implementing Sets and Maps

 The Java class library provides thorough and
efficient implementations of underlying binary
search trees in these two classes:
— TreeSet
— TreeMap

* Both of those classes can be used with either
the normal ordering of the elements (via the
Comparable interface) or via a Comparator



TreeSet<T>

* |n a TreeSet, we store elements in an order
determined either by their natural ordering
(based on their CompareTo method) or an
ordering based on a provided Comparator

e Each element stored in a TreeSet contains all of
the data associated with that object

* The TreeSet class implements a set using a
Red/Black binary search tree for efficiency in
the add, contains, and remove operations



TreeSet<T>

 Some of the TreeSet unigue methods are:

TreeSet () // constructs a new set sorted
according to natural order of the objects

TreeSet (Comparator<T> c) // constructs a
new set sorted according to Comparator c

boolean add (T o) // adds the specified
element to the set 1f not already present

boolean contains (Object o) // returns true
1f this object 1is present 1in the set

boolean remove (Object o) // removes this
element from the set 1f 1t 1s present



TreeMap<K,V>

In a TreeMap, we separate the data being stored into a
key and the rest of the data (the value)

Internally, node objects are stored in the tree

Each node object contains

— a reference to the key

— a reference to the object containing the rest of the data
— two links to the child nodes

— and a link to the parent node

The TreeMap class implements a map using a Red/Black
binary search tree



TreeMap<K,V>

* Some of the TreeMap unique methods are:

TreeMap () // constructs a new map sorted
according to natural order of the objects
TreeMap (Comparator<K> c¢) // constructs a

new map sorted according to Comparator c

V put (K key, V value) // associates the
value with the key

boolean containsKey (Object key) // returns
true 1f the map contailins a mappling for key

boolean containsValue (Object wvalue) //
returns true 1f the mapping contains a key
value pailr for this wvalue

V get (Object key) // returns the value V
mapped to the key



Using Set/Map APIs with a Comparator

* |nstantiate the Comparator
Comparator<String> comp
= new StringComparator () ;

* |nstantiate a TreeSet containing Strings
TreeSet<String> mySet
= new TreeSet<String> (comp) ;

* [nstantiate a TreeMap with Strings as keys

TreeMap<String,ValueClass> myTree
= new TreeMap<String,ValueClass> (comp) ;



Set and Map Efficiency

* The TreeSet and TreeMap classes provide
O(log n) access to their data

* When the sort order is not important, there is
a more efficient way to implement sets and
maps with a data structure called a hash table

* A hash table provides approximately O(1)
access to its data and will be covered in CS310



Review for Exam

e Review for Exam 3
— Practice exam is on-line
— Question and Answer Session

* Exam 3
— Open Book / Open Notes
— No Electronic Devices (calculators, laptops, etc)

— Students with E-books must sit in front row so
that | can see what’s on their screen at any time



