
1

Homework

• Reading Assignment

– Professional Assembly Language, pp 39-59, 62-65

• Lab 1

– Download and Read Lab1 Write up

– Go to lab with your section next week

• MP1

– Get assignment file from my web page and study it

– Make and populate your Linux mp1 subdirectory

– Study the source code for mp1

Embedded Systems Lab

• Introduction to CS341 lab equipment

• Arduino microcomputer system / breadboard

2

Embedded Systems Lab

• Microprocessor – AtMega328P

– 8 bit AVR processor @ up to 20 MHz clock

– 32 Kbytes program memory plus 1 Kbyte RAM

• Programmed using a language like C/C++ with

a custom I/O support library

• Development system cost $36.00!

• Buying the processor alone in quantity would

probably be about the price of a candy bar
3

Embedded Systems Lab

• To use embedded software development tools, a

development host is attached to a target host via:

– RS-232

– Ethernet

– USB

– Other?

4

USB CableDevelopment

Host

PC

MP Development Environment

• You will also develop C and assembly code for

a virtual embedded system on a PC

• You will use two VMware virtual machines

– One VM provides a Linux development system

– One VM emulates an embedded system with Tutor

• Tutor is just a debug monitor - not really an

operating system like Linux

• Tutor allows operations prohibited by an O/S
5

MP Development Environment

6

PC

tutor-vserver

(Linux)

tutor

(Tutor)

COM1 COM2

SCP

ulab.cs.umb.edu

(Unix)

Your home

directory

and your

cs341 directory

Virtual Embedded SystemVirtual Development System

SSH Secure

Telnet

7

MP Development Environment

• On your PC:

– use SSH to login to users@cs.umb.edu

– rlogin to ulab

• On ulab:

– copy/edit source files

– compile and/or assemble them

– create tutor executable files (.lnx)

• On your PC:

– openVMWare

– start tutor-vserver and tutor

mailto:users@cs.umb.edu

MP Development Environment
• On tutor-vserver:

– use scp to transfer .lnx files to local Linux

– use mtip to control and monitor the tutor VM
(Linux prompt>) mtip –f filename.lnx

. . .

Tutor>

• To download the executable “filename.lnx”

Tutor> ~d (Wait for “….Done.” Response)

• To start running the downloaded program:
Tutor> go 100100

8

9

MP Development Environment

tutor-vserver

mtip

You
file.lnx

Tutor

~q

Transparent Relaying of Tutor commands

Memory

tutor

~d

PC

(Quits mtip)

Send ctrl+alt+del

Reset tutor VM

10

System Build Processes

• The system build processes for C and assembly

source courses are driven by our makefiles

• However, it is important to understand how the

component build steps work with the SW tools:

Unix/Linux Cross Development for Tutor

gcc i386-gcc

as i386-as (informally called “gas”)

ld i386-ld

nm i386-nm

objdump i386-objdump (alias “disas”)

11

Build for gcc Compilation

prog.i

C Source

Code

gcc -E

gcc -S

gcc -c

gcc -o

Translation

Unit

Assembly

Code

Object

Code

Executable

File

prog.c prog.s prog.o prog

12

Build for i386-gcc Compilation

prog.i

C Source

Code

i386-gcc -E

i386-gcc -S

i386-gcc -c

i386-gcc -o

Translation

Unit

Assembly

Code

Object

Code

Executable

File

prog.c prog.s prog.opc prog.lnx

13

Build for i386-gcc and i386-as

i386-as

Assembly

Code

Object

Code

Executable

File

prog.s *.opc prog.lnx

C Source

Code

i386-gcc -c

progc.c

i386-ld

14

Build - Symbol Table Generation

• The syms file shows the memory address

assigned for each variable or source label

i386-nm

Symbol

File

Object

Code

Executable

File

prog.opc prog.lnx syms

i386-nm

15

Example: Test Program

• Make a subdirectory “test” on your cs341

• Copy to that directory the files from:

~bobw/cs341/examples/lecture02

• Compile and run a program named test.c on

both ulab/tutor-vserver and Tutor VM

16

Build/Run test program on Unix

• Create the Linux executable “test”

ulab(60)% gcc –o test test.c (as in CS240)

• Execute it (avoiding conflict with Unix “test”)

ulab(61)% ./test

• Follow the program’s directions. It should

finish up quickly and hand control back to

Linux. You will see a Linux prompt again.

17

Build/Run test program on Tutor

• Make the Tutor executable, test.lnx .

ulab(65)% make C=test test.lnx

– The suffix “.lnx” is a Linux-defined transfer format

• Execute mtip with the executable file you are planning
to download and execute

ulab(66)% mtip -f test.lnx

• Hit enter to get the Tutor prompt.

• It’s safest to reboot the tutor VM (If a tutor VM ever
starts working weirdly, you should reboot it.)

18

Build/Run test program on Tutor

• Type “~d” to download test.lnx

• To execute the program, when you see the Tutor
prompt again, type

Tutor> go 100100

• Follow the program’s directions. It should finish
up quickly and hand control back to Tutor. You
will see Tutor prompt again.

• You can run it again by command “go 100100”.

• Type “~q” to quit out of mtip

19

Analysis of Example
• For Linux or Tutor, the basic process to develop

programs is the same - only different in the details

• “Cross-compilation” is defined as the compilation

of a program on one computer (UNIX or Linux

development host) for execution on another

computer (Tutor target machine)

– We use gcc to generate an executable file that will run

on the ulab UNIX system or Linux VM system

– We use i386-gcc to generate an executable file that can

NOT run on Linux but will run on the Tutor VM

20

Analysis of Example

• Portability

– Defined as ability to write source code so that it
can run on two or more types of machines

– Requires use of a different compiler/loader and
library for each type of machine

• Notice that the library functions called by
the test program worked slightly differently
on the two types of machines (as noted in
the text produced by the test program)

21

Analysis of Example

• A key difference between UNIX or Linux VM
and the Tutor VM is the presence / absence of
an operating system

– UNIX and Linux are operating systems that run
programs in a protected environment. Our code
can not do some things such as access hardware
directly

– Tutor is a debug monitor only and does not run
programs in a protected environment. Our code
can access hardware directly as you’ll see later

22

Machine Project 1

• In mp1, you will add commands to a program
that is a simple version of the Tutor program
that we just used

• The program is “portable” so that executable
runs on ulab UNIX, vserver Linux, and Tutor
depending on the build process used

• You will learn about some things about the
differences between the UNIX, Linux, and
Tutor environments

23

Two Different Environments
• How is our program loaded into memory?

ulab/vserver tutor

Code

Data

0x00000000

0x00010000

code

data

stack

0x00020000

0xFFFFFFFF

0x003FFFFF

Reserved

Stack

0x00000000

0x00050000

0x000F0000 BIOS (ROM)

Tutor

Reserved

0x000A0000 Video Memory

0x00100000

Reserved

0xFFFFFFFF

Not Implemented

Sample Run of PC-Tutor on vserver

24

