Homework / Exam

Return and Review Exam #1

Reading
— S&S Extracts 385-393, PIC Data Sheet

Machine Projects
— Start on mp3 (Due Class 19)

Labs
— Continue in labs with your assigned section

Interrupts

An interrupt acts as a “hardware generated”
function call — External versus Internal

|/O device generates a signal to processor
Processor interrupts software execution

Processor executes appropriate interrupt service
routine (ISR) for the 1/O device

ISR returns control to the software that was
executing before the interrupt occurred

Adding Interrupts to the Hardware

* Add Programmable Interrupt Controller “Chip”
— IRQ line from 1/O device to PIC

— Interrupt line from PIC to CPU
Control Bus (M/10#, W/R#, D/IC#)

Address Bus

x86
» CPU

Memory /0 | IRQ Line | Program.

Device _ Interrupt

Controller

Data Bus

Interrupt Line

Adding Interrupts to the Hardware

* Programmable Interrupt Controller: The 8259A chip
— Each Chip supports eight interrupt request (IRQ) lines

— Asserts INTR to CPU, responds to resulting INTA# with an
8-bit interrupt vector (“Oxdd”) on the data bus

* Industry Standard Architecture (ISA) Bus
— Priority: highest to lowest order is IRQO-1, IRQ8-15, IRQ3-7

«—— |RQO «— |RQ8
«— |RQ1 «— [RQ9
. «— IRQ10
ToCPU | Master =—— IRQ3 Slave «—— |RQ11
) 8259 +—— IRQ4 8259 L —— IRQ12
— IRQ5 «— |RQ13
— IRQ6 «— |RQ14
«—— IRQ7 «— IRQLS 4

Interrupt Handling

» Software that was executing “never knew what hit
it” — execution Is suspended until ISR ends

 Processor does the following:

— Pushes %eflags, %cs, and %eip on stack (similar to
making a function call but it saves more context)

— Inhibits other interrupts (similar to cli instruction)
— Initiates an Interrupt Acknowledge Cycle to get IV
— Uses IV to get address of Interrupt Service Routine
— Sets %elp to entry point of the ISR

Interrupt Acknowledge Cycle

CPU Interrupt Acknowledge (INTA#) bus cycle
M/IO# =0, W/R# =0, D/IC#=0

PIC responds with Interrupt Vector (1V) to CPU

1V Is an 8 bit number (0 — 255) equal to the IRQ
number plus a constant (0x20 for Linux) passed
to the processor on the data bus

Processor uses 1V as an index into the Interrupt
Descriptor Table (IDT) to get entry point for ISR

6

Interrupt Descriptor Table

IDT is an array of 8-byte entries (gates) in memory
A special register contains the address of the IDT

In our Tutor VM systems, the IDT is located in the
Tutor memory area

At startup, S/W loads that register using instruction:
lidt idt 48 # load 1dt with 0,0x5604c

1dt_48:
word 0x400 # 1dt imit=0x400
word 0x604c,0x5 # 1dt base=0x0005604c

Interrupt Gate Descriptor

« Contents of each Interrupt Gate Descriptor:
typedef struct desc_struct {

unsigned short addr_lo; /* bits 0-15: handler offset Isbs */
unsigned short selector; /* bits 16-31: selector of handler */
unsigned char zero; /* bits 32-39: all 0 */
unsigned char flags, /* bits 40-47: valid, dpl, type */
unsigned short addr_hi;/* bits 48-63: handler offset msbs */
} Gate_descriptor;
* An example from Tutor VM memory

25 eb 10 00 00 8e 05 00
ISR address = 0x0005eb25, CS = 0x0010, flags = 0x8e

Interrupt Service Routine

What does an ISR do to “handle” interrupt?
Saves any additional registers it uses

Must make 1/O device turn off interrupt signal
— If 1t does not = Infinite loop re-executing the ISR
— Usually accomplished by reading/writing a port

Performs In or out Instructions as needed

Jses out to send End of Interrupt (EOI) to PIC
Restores any additional saved registers
EXxecutes iret instruction to return

Interrupt Return

e \When the ISR executes iret instruction

— Processor pops %elip, %cs, and %eflags
(Note: Done as a single “atomic” operation)

— Popping %eflags may have side effect of re-enabling
Interrupts (The IF flag bit is in %eflags register)

* The software that was interrupted resumes Its
normal execution like nothing happened (It’s
“context” has been preserved)

10

Implementing ISR Code

 Want to write most of ISR code in “C”, but ...

— Can’t push/pop scratch registers in C code

— Can’t tell C compiler to generate 1ret instead of ret
« Write a small assembly ISR or use inline Assy

— Push System registers / C compiler scratch registers

— Call C function for body of ISR code

— Pop System Registers / C compiler scratch registers

— Execute Iret

11

Assembly Language ISR Wrapper

text
.globl _irgOinthand
KERNEL DS =0x18

_IrgQ0inthand:
cld
push %es
push %ds
pushl %eax
pushl %edx
pushl %ecx

Example for MP3 IRQO timer chip interrupt

Linux kernel data segment value

D bit gets restored to old val by iret

in case user code changes data segments

save C scratch regs

movl $KERNEL_DS, %edx

mov %dx, %ds
mov %dx, %es

make sure our data segments are in use now
12

Assembly Language ISR Wrapper

call _irgOinthandc # call C interrupt handler

popl %ecx # restore C scratch registers

popl %edx

popl %eax

pop %ds # restore data segment registers

pop %oes

iret # return to interrupted background code

[* C interrupt Handler Code for MP3 IRQO timer chip interrupt */
void irgOinthandc() {
pic_end_int(); /* notify PIC that its part is done */
tickcount++; [* count the tick in global variable */

13

In-line Assembly ISR

Allows us to write MP3 IRQO ISR without need
for an assembly language wrapper function

Store the address of irgOinthandc ISR directly in
the IDT instead of address of irqOinthand()

Compare to the existing IRQO ISR code in mp3
and previous Assembly Language ISR Wrapper

Since our exercises do not change the Direction
Flag and the CS or ES registers, we don’t need
to save and restore that part of the context

In-line Assembly Code

» Modified MP3 C interrupt handler code for IRQO
volid irgOinthandc(void)
{
/* hardware pushes 3 registers before entry here */
[* compiler generated code adds stack frame */

asm("'pushl %eax"); /* save scratch registers */
asm("'pushl %ecx");

asm("'pushl %edx");
pic_end_int(); /* notify PIC that its part is done */
tickcount++; /* count the tick in global var */:s

In-Line Assembly Code

« State of the Stack during irgOinthandc execution:

Pushed by compiler

%oesp %ebp Stack frame code
Pus.h for Cal_l Pushed by in-line Pushed by HW interrupt
to pic_end_int assembly code

v v

% % % | Yoedx| %ecx| %eax |%ebp | %eip | %cs |%eflags Background

Stack State
Pop from ret Popped by in-line Popped by in-line
in pic_end_int assembly code assembly iret

16

asm("
asm("
asm("

00
00

00

In-line Assembly Code

0l Yoedx"'); /* restore scratch registers */
0l Y%ecx");

0l Y%eax™);

asm("'movl %ebp, %esp"); /* undo stack frame */
asm("'popl %ebp™);

asm("iret"); [* return from interrupt */
[* compiler generated ret instruction is never reached */

17

Advantage of External Interrupts

 Processor can start an 1/0 device and go off to
do other useful work — not walt for it

 When 1I/O device needs attention, the ISR for
that 1/0O device is invoked automatically

« Example:

— When the COM1 THRE goes to the 1 state, the
COML1 port ISR is invoked to load another ASCII
character into the data port and returns

18

Exceptions and SW Interrupts

e Internal — not based on external 1/O device

« EXceptions
— Possible side effects of executing an instruction
— Divide by zero - Execute an exception “ISR”

 Software Interrupts
— Instruction int $n deliberately placed in the code
— System Call - Execute system call (e.g. Linux OS)
— Tutor Breakpoint (int $3) = Return to debugger

19

