
1

Homework / Exam

• Return and Review Exam #1

• Reading

– S&S Extracts 385-393, PIC Data Sheet

• Machine Projects

– Start on mp3 (Due Class 19)

• Labs

– Continue in labs with your assigned section

2

Interrupts

• An interrupt acts as a “hardware generated”

function call – External versus Internal

• I/O device generates a signal to processor

• Processor interrupts software execution

• Processor executes appropriate interrupt service

routine (ISR) for the I/O device

• ISR returns control to the software that was

executing before the interrupt occurred

3

Adding Interrupts to the Hardware

• Add Programmable Interrupt Controller “Chip”

– IRQ line from I/O device to PIC

– Interrupt line from PIC to CPU

x86

CPU

Address Bus

Control Bus (M/IO#, W/R#, D/C#)

Data Bus

Memory IRQ Line Program.

Interrupt

Controller

I/O

Device

Interrupt Line

4

Adding Interrupts to the Hardware
• Programmable Interrupt Controller: The 8259A chip

– Each Chip supports eight interrupt request (IRQ) lines

– Asserts INTR to CPU, responds to resulting INTA# with an

8-bit interrupt vector (“0xdd”) on the data bus

• Industry Standard Architecture (ISA) Bus

– Priority: highest to lowest order is IRQ0-1, IRQ8-15, IRQ3-7

Master

8259

IRQ0

IRQ1

IRQ3

IRQ4

IRQ5

IRQ6

IRQ7

Slave

8259

IRQ8

IRQ9

IRQ10

IRQ11

IRQ12

IRQ13

IRQ14

IRQ15

To CPU

5

Interrupt Handling

• Software that was executing “never knew what hit

it” – execution is suspended until ISR ends

• Processor does the following:

– Pushes %eflags, %cs, and %eip on stack (similar to

making a function call but it saves more context)

– Inhibits other interrupts (similar to cli instruction)

– Initiates an Interrupt Acknowledge Cycle to get IV

– Uses IV to get address of Interrupt Service Routine

– Sets %eip to entry point of the ISR

6

Interrupt Acknowledge Cycle

• CPU Interrupt Acknowledge (INTA#) bus cycle

M/IO# = 0, W/R# = 0, D/C# = 0

• PIC responds with Interrupt Vector (IV) to CPU

• IV is an 8 bit number (0 – 255) equal to the IRQ

number plus a constant (0x20 for Linux) passed

to the processor on the data bus

• Processor uses IV as an index into the Interrupt

Descriptor Table (IDT) to get entry point for ISR

7

Interrupt Descriptor Table
• IDT is an array of 8-byte entries (gates) in memory

• A special register contains the address of the IDT

• In our Tutor VM systems, the IDT is located in the
Tutor memory area

• At startup, S/W loads that register using instruction:

lidt idt_48 # load idt with 0,0x5604c

…

idt_48:

.word 0x400 # idt limit=0x400

.word 0x604c,0x5 # idt base=0x0005604c

8

Interrupt Gate Descriptor

• Contents of each Interrupt Gate Descriptor:

typedef struct desc_struct {

unsigned short addr_lo; /* bits 0-15: handler offset lsbs */

unsigned short selector; /* bits 16-31: selector of handler */

unsigned char zero; /* bits 32-39: all 0 */

unsigned char flags; /* bits 40-47: valid, dpl, type */

unsigned short addr_hi;/* bits 48-63: handler offset msbs */

} Gate_descriptor;

• An example from Tutor VM memory

25 eb 10 00 00 8e 05 00

ISR address = 0x0005eb25, CS = 0x0010, flags = 0x8e

9

Interrupt Service Routine

• What does an ISR do to “handle” interrupt?

• Saves any additional registers it uses

• Must make I/O device turn off interrupt signal

– If it does not  infinite loop re-executing the ISR

– Usually accomplished by reading/writing a port

• Performs in or out instructions as needed

• Uses out to send End of Interrupt (EOI) to PIC

• Restores any additional saved registers

• Executes iret instruction to return

10

Interrupt Return

• When the ISR executes iret instruction

– Processor pops %eip, %cs, and %eflags

(Note: Done as a single “atomic” operation)

– Popping %eflags may have side effect of re-enabling

interrupts (The IF flag bit is in %eflags register)

• The software that was interrupted resumes its

normal execution like nothing happened (It’s

“context” has been preserved)

11

Implementing ISR Code

• Want to write most of ISR code in “C”, but …

– Can’t push/pop scratch registers in C code

– Can’t tell C compiler to generate iret instead of ret

• Write a small assembly ISR or use inline Assy

– Push System registers / C compiler scratch registers

– Call C function for body of ISR code

– Pop System Registers / C compiler scratch registers

– Execute iret

Assembly Language ISR Wrapper

.text # Example for MP3 IRQ0 timer chip interrupt

.globl _irq0inthand

KERNEL_DS = 0x18 # Linux kernel data segment value

_irq0inthand:

cld # D bit gets restored to old val by iret

push %es # in case user code changes data segments

push %ds

pushl %eax # save C scratch regs

pushl %edx

pushl %ecx

movl $KERNEL_DS, %edx

mov %dx, %ds # make sure our data segments are in use now

mov %dx, %es
12

Assembly Language ISR Wrapper
call _irq0inthandc # call C interrupt handler

popl %ecx # restore C scratch registers

popl %edx

popl %eax

pop %ds # restore data segment registers

pop %es

iret # return to interrupted background code

/* C interrupt Handler Code for MP3 IRQ0 timer chip interrupt */

void irq0inthandc() {

pic_end_int(); /* notify PIC that its part is done */

tickcount++; /* count the tick in global variable */

}
13

In-line Assembly ISR

• Allows us to write MP3 IRQ0 ISR without need

for an assembly language wrapper function

• Store the address of irq0inthandc ISR directly in

the IDT instead of address of irq0inthand()

• Compare to the existing IRQ0 ISR code in mp3

and previous Assembly Language ISR Wrapper

• Since our exercises do not change the Direction

Flag and the CS or ES registers, we don’t need

to save and restore that part of the context
14

In-line Assembly Code

• Modified MP3 C interrupt handler code for IRQ0

void irq0inthandc(void)

{

/* hardware pushes 3 registers before entry here */

/* compiler generated code adds stack frame */

asm("pushl %eax"); /* save scratch registers */

asm("pushl %ecx");

asm("pushl %edx");

pic_end_int(); /* notify PIC that its part is done */

tickcount++; /* count the tick in global var */ 15

16

In-Line Assembly Code

• State of the Stack during irq0inthandc execution:

%eip%ebp%ecx %eax

%ebp%esp

%cs %eflags%edx

Pushed by HW interrupt

Popped by in-line

assembly iret

Pushed by in-line

assembly code

Popped by in-line

assembly code

Push for call

to pic_end_int

Pop from ret

in pic_end_int

* * *

Pushed by compiler

Stack frame code

Background

Stack State

In-line Assembly Code

asm("popl %edx"); /* restore scratch registers */

asm("popl %ecx");

asm("popl %eax");

asm("movl %ebp, %esp"); /* undo stack frame */

asm("popl %ebp");

asm("iret"); /* return from interrupt */

/* compiler generated ret instruction is never reached */

}
17

18

Advantage of External Interrupts

• Processor can start an I/O device and go off to

do other useful work – not wait for it

• When I/O device needs attention, the ISR for

that I/O device is invoked automatically

• Example:

– When the COM1 THRE goes to the 1 state, the

COM1 port ISR is invoked to load another ASCII

character into the data port and returns

19

Exceptions and SW Interrupts

• Internal – not based on external I/O device

• Exceptions

– Possible side effects of executing an instruction

– Divide by zero  Execute an exception “ISR”

• Software Interrupts

– Instruction int $n deliberately placed in the code

– System Call  Execute system call (e.g. Linux OS)

– Tutor Breakpoint (int $3)  Return to debugger

