
1

Oct 1, 2015 CS 320 1

Now let us do some…

Counting 

(Chapter 6)
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Basic Counting Principles

Counting problems are of the following kind:  

“How many different 8-letter passwords are 
there?” 

“How many possible ways are there to pick 11 
soccer players out of a 20-player team?”  

Most importantly, counting is the basis for 
computing probabilities of discrete events.  

(“What is the probability of winning the lottery?”) 

Oct 1, 2015 CS 320 3

Basic Counting Principles
The sum rule:  
If a task can be done in n1 ways and a second 
task in n2 ways, and if these two tasks cannot be 
done at the same time, then there are n1 + n2
ways to do either task.  

Example:
The department will award a free computer to 
either a CS student or a CS professor. 
How many different choices are there, if there are 
530 students and 15 professors?   

There are 530 + 15 = 545 choices.   
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Basic Counting Principles

Generalized sum rule:  

If we have tasks T1, T2, …, Tm that can be done 
in n1, n2, …, nm ways, respectively, and no two of 
these tasks can be done at the same time, then 
there are n1 + n2 + … + nm ways to do one of 
these tasks.  
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Basic Counting Principles
The product rule:  

Suppose that a procedure can be broken down 
into two successive tasks. If there are n1 ways to 
do the first task and n2 ways to do the second 
task after the first task has been done, then there 
are n1n2 ways to do the procedure.  

Generalized product rule:  

If we have a procedure consisting of sequential 
tasks T1, T2, …, Tm that can be done in n1, n2, …, 
nm ways, respectively, then there are n1 ⋅ n2 ⋅ … ⋅
nm ways to carry out the procedure.  
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Basic Counting Principles
Example:   

How many different license plates are there that 
contain exactly three English letters ?  

Solution:   

There are 26 possibilities to pick the first letter, 
then 26 possibilities for the second one, and 26 
for the last one. 

So there are 26⋅26⋅26 = 17576 different license 
plates.   
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Basic Counting Principles
The sum and product rules can also be phrased 
in terms of set theory.  

Sum rule: Let A1, A2, …, Am be disjoint sets. Then 
the number of ways to choose any element from 
one of these sets is |A1 ∪ A2 ∪ … ∪ Am | =
|A1| + |A2| + … + |Am|.  

Product rule: Let A1, A2, …, Am be finite sets. Then 
the number of ways to choose one element from 
each set independently in the order A1, A2, …, Am 

is 
|A1 × A2 × … × Am | = |A1| ⋅ |A2| ⋅ … ⋅ |Am|.   
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Inclusion-Exclusion
How many bit strings of length 8 start with a 1 or end with 
00?  

Task 1: Create a string of length 8 that starts with a 1.  

There is one way to pick the first bit (1).  
For each of these there are two ways to pick the second bit 
(0 or 1),
For each of these,two ways to pick the third bit (0 or 1),  
.  
.  
.  
For each, two ways to pick the eighth bit (0 or 1).  

Product rule: Task 1 can be done in 1⋅27 = 128 ways.  
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Inclusion-Exclusion
Task 2: Construct a string of length 8 that ends 
with 00.  

There are two ways to pick the first bit (0 or 1), 
two ways to pick the second bit (0 or 1),
.  
.  
.  
two ways to pick the sixth bit (0 or 1),  
one way to pick the seventh bit (0), and  
one way to pick the eighth bit (0).  

Product rule: Task 2 can be done in 26 = 64 ways.    
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Inclusion-Exclusion

Since there are 128 ways to do Task 1 and 64 
ways to do Task 2, does this mean that there are 
192 bit strings either starting with 1 or ending with 
00 ? 

No, because here Task 1 and Task 2 can be done 
at the same time.  

When we carry out Task 1 and create strings 
starting with 1, some of these strings end with 00.    

Therefore, we sometimes do Tasks 1 and 2 at the 
same time, so the sum rule does not apply.  
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Inclusion-Exclusion
If we want to use the sum rule in such a case, we 
have to subtract the cases when Tasks 1 and 2 are 
done at the same time.  

How many cases are there, that is, how many 
strings start with 1 and end with 00?  

There is one way to pick the first bit (1), 
two ways for the second, …, sixth bit (0 or 1), 
one way for the seventh, eighth bit (0). 

Product rule: In 25 = 32 cases, Tasks 1 and 2 are 
carried out at the same time. 
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Inclusion-Exclusion
Since there are 128 ways to complete Task 1 and 
64 ways to complete Task 2, and in 32 of these 
cases Tasks 1 and 2 are completed at the same   
time, there are  

128 + 64 – 32 = 160 ways to do either task.  

In set theory, this corresponds to sets A1 and A2

that are not disjoint. Then we have:  

|A1 ∪ A2| = |A1| + |A2| - |A1 ∩ A2|  

This is called the principle of inclusion-exclusion.  
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Inclusion-Exclusion

When counting the number of points in a 
finite union of sets, we add the points in all 
the sets.  If intersections are non empty we 
have overcounted, and subtract the 
number of points in the intersections to 
compensate.  If there are more than three 
sets we have usually overcompensated 
and have to add back the number of points 
in the intersections of three of the sets.  
This process continues…

See Theorem 1, page 556.  The notation is 
hard to put in powerpoint.
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Inclusion-Exclusion

We’ll draw a Venn diagram for the 
inclusion-exclusion theorem for n = 3 
and n = 4.

The general case is trickier to prove but 
you can use the proof on p. 556 
once you understand combinations 
and have done the Binomial 
Theorem.  
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Tree Diagrams
How many bit strings of length four do not have 
two consecutive 1s? 

Task 1   Task 2  Task 3 Task 4
(1st bit) (2nd bit)  (3rd bit)   (4th bit)

0

0

0
0

1
1

0

1 0 0

1

1 0

0 0

1
1

0
There are 8 strings.
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The Pigeonhole Principle
The pigeonhole principle: If (k + 1) or more objects 
are placed into k boxes, then there is at least one 
box containing two or more of the objects. 

Example 1: If there are 11 players in a soccer team 
that wins 12-0, there must be at least one player 
in the team who scored at least twice. 

Example 2: If you have 6 classes from Monday to 
Friday, there must be at least one day on which 
you have at least two classes. 
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The Pigeonhole Principle

The generalized pigeonhole principle: If N 
objects are placed into k boxes, then there 
is at least one box containing at least N/k
of the objects. 

Proof:  If every box holds fewer than N/k objects then there 
are fewer than k(N/k) = N objects overall.  Thus some box 
must hold at least N/k objects, thus N/k, since each box 
holds an integral number of objects.  

Example 1: In a 60-student class, at least 12 students will 
get the same letter grade (A, B, C, D, or F).  

Example 2: In a 61-student class, at least 13 students will 
get the same letter grade.  
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The Pigeonhole Principle

Example 3: Assume you have a drawer containing 
a random distribution of a dozen brown socks and 
a dozen black socks. It is dark, so how many 
socks do you have to pick to be sure that among 
them there is a matching pair? 

There are two types of socks, so if you pick at 
least 3 socks, there must be either at least two 
brown socks or at least two black socks. 

Generalized pigeonhole principle: 3/2 = 2. 
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Permutations and Combinations

How many different sets of 3 people can we pick 
from a group of 6? 

There are 6 choices for the first person, 5 for the 
second one, and 4 for the third one, so are there
6⋅5⋅4 = 120 ways to do this? 

This is not the correct result! 

For example, picking person C, then person A, and 
then person E leads to the same group as first 
picking E, then C, and then A.  

However, these cases are counted separately in 
the above equation.  
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Permutations and Combinations

So how can we compute how many different 
subsets of people can be picked (that is, we want 
to disregard the order of picking) ? 

To find out about this, we need to look at 
permutations. 

A permutation of a set of distinct objects is an 
ordered arrangement of these objects. 

An ordered arrangement of r elements of a set is 
called an r-permutation. 
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Permutations and Combinations

Example: Let S = {1, 2, 3}. 
The arrangement 3, 1, 2 is a permutation of S. 
The arrangement 3, 2 is a 2-permutation of S. 

The number of r-permutations of a set with n 
distinct elements is denoted by P(n, r). 

We can calculate P(n, r) with the product rule:

P(n, r) = n⋅(n – 1)⋅(n – 2) ⋅…⋅(n – r + 1).  

(n choices for the first element, (n – 1) for the 
second one, (n – 2) for the third one…)   
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Permutations and Combinations

Example:

P(8, 3) = 8⋅7⋅6 = 336
= (8⋅7⋅6⋅5⋅4⋅3⋅2⋅1)/(5⋅4⋅3⋅2⋅1)

General formula:

P(n, r) = n!/(n – r)!

Knowing this, we can return to our initial question:

How many different sets of 3 people can we pick 
from a group of 6?
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Permutations and Combinations

An r-combination of elements of a set is an 
unordered selection of r elements from the set.
Thus, an r-combination is simply a subset of the 
set with r elements.

Example: Let S = {1, 2, 3, 4}.
Then {1, 3, 4} is a 3-combination from S.

The number of r-combinations of a set with n 
distinct elements is denoted by C(n, r).

Example: C(4, 2) = 6, since, for example, the 2-
combinations of {1, 2, 3, 4} are {1, 2}, {1, 3}, 
{1, 4}, {2, 3}, {2, 4}, {3, 4}.
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Permutations and Combinations

How can we calculate C(n, r)?

Consider that we can obtain the r-permutation of a 
set in the following way:

First, we form all the r-combinations of the set
(there are C(n, r) such r-combinations).

Then, we generate all possible orderings in each of 
these r-combinations (there are P(r, r) such 
orderings in each case).

Therefore, we have:

P(n, r) = C(n, r)⋅P(r, r)
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Combinations

C(n, r) = P(n, r)/P(r, r)
= n!/(n – r)!/(r!/(r – r)!)
= n!/(r!(n – r)!)

Now we can answer our initial question:

How many ways are there to pick a set of 3 people 
from a group of 6 (disregarding the order of 
picking)?

C(6, 3) = 6!/(3!⋅3!) = 720/(6⋅6) = 720/36 = 20

There are 20 different ways, that is, 20 different 
groups that may be picked.
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Combinations

Corollary:
Let n and r be nonnegative integers with r ≤ n.
Then C(n, r) = C(n, n – r).

Note that “picking a group of r people from a group 
of n people” is the same as “splitting a group of n 
people into a group of r people and another group 
of (n – r) people”. 

Please also look at the proof on page 411 (page 359 
of the 6th edition).
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Combinations
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This symmetry is intuitively plausible. For example, let 

us consider a set containing six elements (n = 6).

Picking two elements and leaving four is essentially 

the same as picking four elements and leaving two.

In either case, our number of choices is the number of 

ways to divide the set into one set containing two 

elements and another set containing four elements.
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Combinations

Example:
A soccer club has 8 female and 7 male members. 
For today’s match, the coach wants to have 6 
female and 5 male players on the grass. How 
many possible configurations are there?

C(8, 6) ⋅ C(7, 5) = 8!/(6!⋅2!) ⋅ 7!/(5!⋅2!)
= 28⋅21 
= 588
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Combinations

Pascal’s Identity (page 418) [366 in 6th ed.]:

Let n and k be positive integers with n ≥ k.
Then C(n + 1, k) = C(n, k – 1) + C(n, k).

How can this be explained?

What is it good for?
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Combinations
Imagine a set S containing n elements and a set 
T containing (n + 1) elements, namely all 
elements in S plus a new element a.

Calculating C(n + 1, k) is equivalent to answering 
the question: How many subsets of T containing 
k items are there?

Case I: The subset contains (k – 1) elements of S 
plus the element a: C(n, k – 1) choices.

Case II: The subset contains k elements of S and 
does not contain a: C(n, k) choices.

Sum Rule: C(n + 1, k) = C(n, k – 1) + C(n, k).



6

Oct 1, 2015 CS 320 31CS 320 31

Pascal’s Triangle

In Pascal’s triangle, each number is the sum of 
the numbers to its upper left and upper right:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

… … … … … …
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Pascal’s Triangle

Since we have C(n + 1, k) = C(n, k – 1) + C(n, k) 
and
C(0, 0) = 1, we can use Pascal’s triangle to 
simplify the computation of C(n, k):

C(0, 0) = 1

C(1, 0) = 1 C(1, 1) = 1

C(2, 0) = 1 C(2, 1) = 2 C(2, 2) = 1

C(3, 0) = 1 C(3, 1) = 3 C(3, 2) = 3 C(3, 3) = 1

C(4, 0) = 1 C(4, 1) = 4 C(4, 2) = 6 C(4, 3) = 4 C(4, 4) = 1

k

n
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Binomial Coefficients

Expressions of the form C(n, k) are also called 
binomial coefficients.

How come?

A binomial expression is the sum of two terms, 
such as (a + b).

Now consider (a + b)2 = (a + b)(a + b).

When expanding such expressions, we have to 
form all possible products of a term in the first 
factor and a term in the second factor:

(a + b)2 = a·a + a·b + b·a + b·b

Then we can sum identical terms:

(a + b)2 = a2 + 2ab + b2
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Binomial Coefficients
For (a + b)3 = (a + b)(a + b)(a + b) we have

(a + b)3 = aaa + aab + aba + abb + baa + bab + bba 
+ bbb

(a + b)3 = a3 + 3a2b + 3ab2 + b3

There is only one term a3, because there is only 
one possibility to form it: Choose a from all three 
factors: C(3, 3) = 1.

There is three times the term a2b, because there 
are three possibilities to choose a from a subset
of two out of the three factors: C(3, 2) = 3.

Similarly, there is three times the term ab2

(C(3, 1) = 3) and once the term b3 (C(3, 0) = 1).
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Binomial Coefficients

This leads us to the following formula:
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With the help of Pascal’s triangle, this formula 
can considerably simplify the process of 
expanding powers of binomial expressions.

For example, the fifth row of Pascal’s triangle
(1 – 4 – 6 – 4 – 1) helps us to compute (a + b)4:

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

(Binomial Theorem)
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Binomial Theorem

We can prove the Binomial Theorem in 
two ways.

First, an argument about how the term 
ajbn-j appears when we expand 
(a+b)n = (a+b)…(a+b), by choosing a 
from j of the factors (a+b) and b from 
n-j of them.  This choice can be 
made in C(n,j) ways, so the 
coefficient of ajbn-j will be C(n,j)



7

Oct 1, 2015 CS 320 37CS 320 37

Binomial Theorem
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Second proof (induction on n)

Base case: n = 0.  LHS = (a+b)0 = 1

RHS = C(0,0)a0b0 = 1.

Induction step: Suppose the formula is true for n.

Binomial Theorem:
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Proof of Binomial Theorem

In slide 2 of the proof using induction:

From line 1 to line 2 we split off the term j=0,
an,from the first sum and k=n, bn, from the 
second sum (having replaced j by k). 
Note that C(n,0) = C(n,n) = 1.

From line 2 to line 3 we let k+1=j, so k=j-1, and 
fixed the sum limits.

Then we combined the sums and applied 
Pascal’s theorem.

Then we put the an+1, j=0, and bn+1,j=n+1 terms 
back in the sum, to get the result.


