Geometric Distribution

(from last time)

- · Def. A r.v. X has the geometric distribution with parameter p, 0 , if $P(X=k) = (1-p)^{k-1}p, k = 1,2,3,4...$
- Example: X could be the number of times you have to flip a coin before getting an H, if P(H) = p on any flip.
- Note: the geometric distribution has infinitely many values, but is discrete.
- Theorem. If X is geometric with parameter p, then E(X) = 1/p, $V(X) = (1-p)/p^2$

13 Oct 2015

Geometric Distribution

- let $f(x) = \sum_{n=0}^{\infty} x^n = (1-x)^{-1}$. Then:
- 1. $f'(x) = \sum_{n=1}^{\infty} nx^{n-1} = (1-x)^{-2}$, and

- 1. $f'(x) = \sum_{n=1}^{\infty} nx^{n-1} = (1-x)^{-2}$, and 2. $f''(x) = \sum_{n=2}^{\infty} n(n-1)x^{n-2} = 2(1-x)^{-3}$. $E(X) = \sum_{n=1}^{\infty} nP(X=n) = \sum_{n=1}^{\infty} n(1-p)^{n-1}p = p(1-(1-p))^{-2} = 1/p$, using 1. $V(X) = \sum_{n=1}^{\infty} (n-p^{-1})^2 P(X=n) = \sum_{n=1}^{\infty} (n-p^{-1})^2 (1-p)^{n-1}p = \sum_{n=1}^{\infty} (n^2-2np^{-1}+p^{-2})(1-p)^{n-1}p = \sum_{n=1}^{\infty} (n(n-1) + n 2np^{-1}+p^{-2})(1-p)^{n-1}p = \sum_{n=1}^{\infty} (n(n-1) + n(1-2p^{-1})+p^{-2})(1-p)^{n-1}p = (1-p)p\sum_{n=2}^{\infty} n(n^{-1})(1-p)^{n-2} + (1-2p^{-1})p\sum_{n=1}^{\infty} n(1-p)^{n-1} + p^{-2}\sum_{n=1}^{\infty} (1-p)^{n-1}p = (1-p)p^2 + (1-2p^{-1})^2 + (1-2p^{$

13 Oct 2015

Chebyshev's Inequality

- · Chebyshev's Inequality gives a bound on the probability that a random variable X, with sample space S, probability function p, takes on a value far from the mean, E(X).
- Theorem (p 491) (p 439 in 6th edition)
- $p({s : |X(s) E(X)| \ge r}) \le V(X)/r^2$

13 Oct 2015 cs 320

- Proof: Let A = $\{s : |X(s) E(X)| \ge r\}$
- We need to show $p(A) \le V(X)/r^2$
- Now, $V(X) = \sum_{s \in S} (X(s) E(X))^2 p(s)$
- = $\sum_{s \in A} (X(s) E(X))^2 p(s) +$ $\sum_{s \notin A} (X(s) - E(X))^2 p(s)$
- $\geq \sum_{s \in A} (X(s) E(X))^2 p(s)$
- $\geq r^2 \sum_{s \in A} p(s) = r^2 p(A)$

since $|X(s) - E(X)| \ge r$ in A.

13 Oct 2015 cs 320 Now it's Time for...

Advanced Counting Techniques

13 Oct 2015 cs 320 5

Recurrence Relations

•A **recurrence relation** for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, a_0 , a_1 , ..., a_{n-1} , for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer.

•A sequence is called a **solution** of a recurrence relation if its terms satisfy the recurrence relation.

13 Oct 2015 cs 320 6

Recurrence Relations

- In other words, a recurrence relation is like a recursively defined sequence, but without specifying any initial values (initial conditions).
- •Therefore, the same recurrence relation can have (and usually has) **multiple solutions**.
- •If **both** the initial conditions and the recurrence relation are specified, then the sequence is **uniquely** determined.

13 Oct 2015 cs 320 7

Recurrence Relations

•Example:

Consider the recurrence relation $a_n = 2a_{n-1} - a_{n-2}$ for n = 2, 3, 4, ...

- •Is the sequence $\{a_n\}$ with a_n =3n a solution of this recurrence relation?
- •For $n \ge 2$ we see that

 $2a_{n-1} - a_{n-2} = 2(3(n-1)) - 3(n-2) = 3n = a_n$.

•Therefore, $\{a_n\}$ with a_n =3n is a solution of the recurrence relation.

Recurrence Relations

- •Is the sequence $\{a_n\}$ with a_n =5 a solution of the same recurrence relation?
- •For $n \ge 2$ we see that $2a_{n-1} a_{n-2} = 2.5 5 = 5 = a_n$.
- •Therefore, $\{a_n\}$ with a_n =5 is also a solution of the recurrence relation.

13 Oct 2015 cs 320

Modeling with Recurrence Relations

•Example:

•Someone deposits \$10,000 in a savings account at a bank yielding 5% per year with interest compounded annually. How much money will be in the account after 30 years?

•Solution:

- •Let P_n denote the amount in the account after n vears.
- •How can we determine P_n on the basis of P_{n-1} ?

13 Oct 2015 cs 320 10

Modeling with Recurrence Relations

- •We can derive the following recurrence relation:
- $\bullet P_n = P_{n-1} + 0.05P_{n-1} = 1.05P_{n-1}$.
- •The initial condition is $P_0 = 10,000$.
- •Then we have:
- $P_1 = 1.05P_0$
- $\bullet P_2 = 1.05P_1 = (1.05)^2P_0$
- $P_3 = 1.05P_2 = (1.05)^3P_0$
- •
- $P_n = 1.05P_{n-1} = (1.05)^n P_0$
- •We now have a **formula** to calculate P_n for any natural number n and can avoid the iteration.

11

13 Oct 2015 es 320

Modeling with Recurrence Relations

- •Let us use this formula to find P_{30} under the •initial condition $P_0 = 10,000$:
- $\bullet P_{30} = (1.05)^{30} \cdot 10,000 = 43,219.42$

After 30 years, the account contains \$43,219.42.

Modeling with Recurrence Relations

•Another example:

•Let a_n denote the number of bit strings of length n that do not have two consecutive 0s ("valid strings"). Find a recurrence relation and give initial conditions for the sequence $\{a_n\}$.

•Solution:

•Idea: The number of valid strings equals the number of valid strings ending with a 0 plus the number of valid strings ending with a 1.

13 Oct 2015 cs 320 13

Modeling with Recurrence Relations

- •Let us assume that $n \ge 3$, so that the string contains at least 3 bits.
- •Let us further assume that we know the number a_{n-1} of valid strings of length (n-1) and the number a_{n-2} of valid strings of length (n-2).
- •Then how many valid strings of length n are there, if the string ends with a 1?
- •There are a_{n-1} such strings, namely the set of valid strings of length (n-1) with a 1 appended to them.
- •Note: Whenever we append a 1 to a valid string, that string remains valid.

13 Oct 2015 cs 320 14

Modeling with Recurrence Relations

- •Now we need to know: How many valid strings of length n are there, if the string ends with a **0**?
- •Valid strings of length n ending with a 0 must have a 1 as their (n 1)st bit (otherwise they would end with 00 and would not be valid).
- •And what is the number of valid strings of length (n-1) that end with a 1?
- •We already know that there are a_{n-1} strings of length n that end with a 1.
- •Therefore, there are a_{n-2} strings of length (n-1) that end with a 1.

13 Oct 2015 cs 320 15

Modeling with Recurrence Relations

- •So there are a_{n-2} valid strings of length n that end with a 0 (all valid strings of length (n-2) with 10 appended to them).
- •As we said before, the number of valid strings is the number of valid strings ending with a 0 plus the number of valid strings ending with a 1.
- •That gives us the following recurrence relation:
- $a_n = a_{n-1} + a_{n-2}$

Modeling with Recurrence Relations

- •What are the initial conditions?
- $\bullet a_1 = 2 (0 \text{ and } 1)$
- $\bullet a_2 = 3 (01, 10, and 11)$
- $a_3 = a_2 + a_1 = 3 + 2 = 5$
- $a_4 = a_3 + a_2 = 5 + 3 = 8$
- $a_5 = a_4 + a_3 = 8 + 5 = 13$
- •...
- •This sequence satisfies the same recurrence relation as the **Fibonacci sequence**.
- •Since $a_1 = f_3$ and $a_2 = f_4$, we have $a_n = f_{n+2}$.

17

Solving Recurrence Relations

- •In general, we would prefer to have an **explicit formula** to compute the value of a_n rather than conducting n iterations.
- •For one class of recurrence relations, we can obtain such formulas in a systematic way.
- •Those are the recurrence relations that express the terms of a sequence as **linear combinations** of previous terms.

13 Oct 2015 cs 320 18

Solving Recurrence Relations

- •Definition: A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form:
- $\bullet a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k},$
- •Where $c_1,\,c_2,\,...,\,c_k$ are real numbers, and $c_k\neq 0.$
- •A sequence satisfying such a recurrence relation is uniquely determined by the recurrence relation and the k initial conditions

$$\bullet a_0 = C_0, a_1 = C_1, a_2 = C_2, ..., a_{k-1} = C_{k-1}.$$

13 Oct 2015

cs 320

Solving Recurrence Relations

- •Why are they called linear?
- If $\{x_n\}$ & $\{y_n\}$ are solutions of

$$a_n = \sum_{j=1}^k c_j a_{n-j}$$
 then

 $\{ux_n + vy_n\}$ is a solution, for u,v real.

- $$\begin{split} \bullet \mathbf{u} \mathbf{x}_{\mathbf{n}} &= \mathbf{u} \boldsymbol{\Sigma}_{\mathbf{j}=1}{}^{\mathbf{k}} \, \mathbf{c}_{\mathbf{j}} \mathbf{x}_{\mathbf{n}-\mathbf{j}} = \boldsymbol{\Sigma}_{\mathbf{j}=1}{}^{\mathbf{k}} \, \mathbf{c}_{\mathbf{j}} \mathbf{u} \mathbf{x}_{\mathbf{n}-\mathbf{j}} \;, \\ &\text{and more generally,} \end{split}$$
- $\begin{aligned} \bullet u x_n + v y_n &= u \sum_{j=1}^k c_j x_{n-j} + v \sum_{j=1}^k c_j y_{n-j} \\ &= \sum_{j=1}^k c_j (u x_{n-j} + v y_{n-i}) \end{aligned}$

13 Oct 2015

cs 320

5

Solving Recurrence Relations

•Examples:

- •The recurrence relation $P_n = (1.05)P_{n-1}$
- •is a linear homogeneous recurrence relation of degree one.
- •The recurrence relation $f_n = f_{n-1} + f_{n-2}$
- •is a linear homogeneous recurrence relation of degree two.
- •The recurrence relation $a_n = a_{n-5}$ •is a linear homogeneous recurrence relation of degree five.

13 Oct 2015 cs 320 21

Solving Recurrence Relations

- ·Basically, when solving such recurrence relations, we try to find solutions of the form $a_n = r^n$, where r is a constant.
- • $a_n = r^n$ is a solution of the recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$
 if and only if

$$\bullet r^n = c_1 r^{n-1} + c_2 r^{n-2} + \dots + c_k r^{n-k}.$$

•Divide this equation by rn-k and subtract the righthand side from the left:

$$\cdot r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \dots - c_{k-1}r - c_{k} = 0$$

•This is called the characteristic equation of the recurrence relation.

13 Oct 2015

Solving Recurrence Relations

- •The solutions of this equation are called the **characteristic roots** of the recurrence relation.
- Let us consider linear homogeneous recurrence relations of degree two.
- •Theorem: Let c₁ and c₂ be real numbers. Suppose that $r^2 - c_1 r - c_2 = 0$ has two distinct roots r_1 and r_2 .
- •Then the sequence {a_n} is a solution of the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ if and only if $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ for n = 0, 1, 2, ..., where α_1 and α_2 are constants.
- •See page 515 (6th Edition: pp. 414 and 415) for the proof.

13 Oct 2015 23 cs 320

Solving Recurrence Relations

- •Example: What is the solution of the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 2$ and $a_1 = 7$?
- •Solution: The characteristic equation of the recurrence relation is $r^2 - r - 2 = 0$.
- •Its roots are r = 2 and r = -1.
- •Hence, the sequence {a_n} is a solution to the recurrence relation if and only if:
- • $a_n = \alpha_1 2^n + \alpha_2 (-1)^n$ for some constants α_1 and α_2 .

13 Oct 2015 cs 320 24

Solving Recurrence Relations

•Given the equation a_n = $\alpha_1 2^n$ + $\alpha_2 (-1)^n$ and the initial conditions a_0 = 2 and a_1 = 7, it follows that

•
$$a_0 = 2 = \alpha_1 + \alpha_2$$

•
$$a_1 = 7 = \alpha_1 \cdot 2 + \alpha_2 \cdot (-1)$$

- •Solving these two equations gives us α_1 = 3 and α_2 = -1.
- •Therefore, the solution to the recurrence relation and initial conditions is the sequence $\{a_n\}$ with

$$a_n = 3 \cdot 2^n - (-1)^n$$
.

13 Oct 2015

cs 320

25

27

Solving Recurrence Relations

- •Another Example: Give an explicit formula for the Fibonacci numbers.
- •Solution: The Fibonacci numbers satisfy the recurrence relation $f_n = f_{n-1} + f_{n-2}$ with initial conditions $f_0 = 0$ and $f_1 = 1$.
- •The characteristic equation is $r^2 r 1 = 0$.
- •Its roots are

13 Oct 2015 cs 320 26

Solving Recurrence Relations

•Therefore, the Fibonacci numbers are given by

for some constants α_1 and α_2 . We can determine values for these constants so that the sequence meets the conditions f_0 = 0 and f_1 = 1:

13 Oct 2015

cs 320

Solving Recurrence Relations

•The unique solution to this system of two equations and two variables is

So finally we obtained an explicit formula for the Fibonacci numbers:

13 Oct 2015

cs 320

28

Solving Recurrence Relations

- •But what happens if the characteristic equation has only one root?
- •How can we then match our equation with the initial conditions a_0 and a_1 ?
- •Theorem: Let c_1 and c_2 be real numbers with $c_2 \neq 0$. Suppose that $r^2 c_1 r c_2 = 0$ has only one root r_0 . A sequence $\{a_n\}$ is a solution of the recurrence relation $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ if and only if $a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n$, for n = 0, 1, 2, ..., where α_1 and α_2 are constants. (Theorem 2, page 517)

13 Oct 2015 cs 320 29

Solving Recurrence Relations

- •Example: What is the solution of the recurrence relation $a_n = 6a_{n-1} 9a_{n-2}$ with $a_0 = 1$ and $a_1 = 6$?
- •**Solution:** The only root of $r^2 6r + 9 = 0$ is $r_0 = 3$. Hence, the solution to the recurrence relation is
- • $a_n = \alpha_1 3^n + \alpha_2 n 3^n$ for some constants α_1 and α_2 .
- •To match the initial condition, we need
- • $a_0 = 1 = \alpha_1$
- $a_1 = 6 = \alpha_1 \cdot 3 + \alpha_2 \cdot 3$
- •Solving these equations yields $\alpha_1 = 1$ and $\alpha_2 = 1$.
- Consequently, the overall solution is given by
- $a_n = 3^n + n3^n$.

13 Oct 2015 cs 320

Divide-and-Conquer Recurrences

- •Some algorithms take a problem and **successively divide** it into one or more smaller problems until there is a **trivial solution** to them.
- •For example, the **binary search** algorithm recursively divides the input into two halves and eliminates the irrelevant half until only one relevant element remained.
- •This technique is called "divide and conquer".
- •We can use **recurrence relations** to analyze the complexity of such algorithms.

13 Oct 2015 cs 320 31

Divide-and-Conquer Recurrences

- •Suppose that an algorithm divides a problem (input) of size **n** into **a** subproblems, where each subproblem is of size **n/b**. Assume that **g(n)** operations are performed for such a division of a problem.
- •Then, if **f(n)** represents the number of operations required to solve the problem, it follows that f satisfies the recurrence relation
- $\bullet f(n) = af(n/b) + g(n).$
- •This is called a divide-and-conquer recurrence relation.

Divide-and-Conquer Recurrences

- •Example: The binary search algorithm reduces the search for an element in a search sequence of size n to the binary search for this element in a search sequence of size n/2 (if n is even).
- •Two comparisons are needed to perform this reduction.
- •Hence, if **f(n)** is the number of comparisons required to search for an element in a search sequence of size n then
- •f(n) = f(n/2) + 2 if n is even.