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Geometric Distribution
(from last time)

• Def.  A r.v. X has the geometric distribution 
with parameter p, 0 < p ≤ 1, if 
P(X=k) = (1-p)k-1p, k = 1,2,3,4…

• Example: X could be the number of times you have to 
flip a coin before getting an H, if P(H) = p on any flip.

• Note:  the geometric distribution has infinitely many 
values, but is discrete.

• Theorem. If X is geometric with parameter p, 
then E(X) = 1/p, V(X) = (1-p)/p2
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Geometric Distribution
• let f(x) = Σn=0

∞ xn = (1-x)-1. Then:
• 1.  f ’(x) = Σn=1

∞ nxn-1 = (1-x)-2, and
• 2. f ’’(x) = Σn=2

∞ n(n-1)xn-2 = 2(1-x)-3.
• E(X) = Σn=1

∞ nP(X=n) = Σn=1
∞ n(1-p)n-1p 

= p(1-(1-p))-2 = 1/p, using 1.
• V(X) = Σn=1

∞ (n-p-1)2 P(X=n) 
= Σn=1

∞ (n-p-1)2 (1-p)n-1p 
= Σn=1

∞ (n2-2np-1+p-2)(1-p)n-1p 
= Σn=1

∞ (n(n-1) +n -2np-1+p-2)(1-p)n-1p 
= Σn=1

∞ (n(n-1) +n(1-2p-1)+p-2)(1-p)n-1p 
= (1-p)pΣn=2

∞ n(n-1)(1-p)n-2 + (1-2p-1)pΣn=1
∞n (1-p)n-1 +

p-2 Σn=1
∞ (1-p)n-1p 

=(1-p)p2p-3 + (p-2)p-2 + p-2, using 2, 1, & sum of all probs.
= p-2(1-p)
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Chebyshev’s Inequality

• Chebyshev’s Inequality gives a bound 
on the probability that a random variable 
X, with sample space S, probability 
function p, takes on a value far from the 
mean, E(X).

• Theorem (p 491) (p 439 in 6th edition)

• p({s : |X(s) – E(X)| ≥ r}) ≤ V(X)/r2
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• Proof: Let A = {s : |X(s) – E(X)| ≥ r}
• We need to show p(A) ≤ V(X)/r2

• Now, V(X) = s∈S(X(s) –E(X))2p(s)
• = s∈A(X(s) –E(X))2p(s) + 
s∉A(X(s) –E(X))2p(s)

≥ s∈A(X(s) –E(X))2p(s) 
≥ r2 s∈Ap(s) = r2 p(A)
since |X(s) – E(X)| ≥ r in A.
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Now it’s Time for…

Advanced
Counting

Techniques
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Recurrence Relations

•A recurrence relation for the sequence {an} is an 
equation that expresses an in terms of one or more 
of the previous terms of the sequence, namely, a0, 
a1, …, an-1, for all integers n with 
n ≥ n0, where n0 is a nonnegative integer.

•A sequence is called a solution of a recurrence 
relation if its terms satisfy the recurrence relation.
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Recurrence Relations

•In other words, a recurrence relation is like a 
recursively defined sequence, but without 
specifying any initial values (initial conditions).

•Therefore, the same recurrence relation can have 
(and usually has) multiple solutions.

•If both the initial conditions and the recurrence 
relation are specified, then the sequence is uniquely 
determined.
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Recurrence Relations
•Example:
Consider the recurrence relation 
an = 2an-1 – an-2 for n = 2, 3, 4, …

•Is the sequence {an} with an=3n a solution of this 
recurrence relation?
•For n ≥ 2 we see that 
2an-1 – an-2 = 2(3(n – 1)) – 3(n – 2) = 3n = an.
•Therefore, {an} with an=3n is a solution of the 
recurrence relation.

13 Oct 2015 cs 320 8



13 Oct 2015

3

Recurrence Relations

•Is the sequence {an} with an=5 a solution of the 
same recurrence relation?
•For n ≥ 2 we see that 
2an-1 – an-2 = 2⋅5 - 5 = 5 = an.

•Therefore, {an} with an=5 is also a solution of the 
recurrence relation.
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Modeling with Recurrence Relations

•Example:
•Someone deposits $10,000 in a savings account at 
a bank yielding 5% per year with interest 
compounded annually. How much money will be in 
the account after 30 years?

•Solution:
•Let Pn denote the amount in the account after n 
years.
•How can we determine Pn on the basis of Pn-1?
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Modeling with Recurrence Relations
•We can derive the following recurrence relation:
•Pn = Pn-1 + 0.05Pn-1 = 1.05Pn-1.
•The initial condition is P0 = 10,000.
•Then we have:
•P1 = 1.05P0
•P2 = 1.05P1 = (1.05)2P0
•P3 = 1.05P2 = (1.05)3P0
•…
•Pn = 1.05Pn-1 = (1.05)nP0

•We now have a formula to calculate Pn for any 
natural number n and can avoid the iteration.
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Modeling with Recurrence Relations

•Let us use this formula to find P30 under the
•initial condition P0 = 10,000:

•P30 = (1.05)30⋅10,000 = 43,219.42

•
After 30 years, the account contains $43,219.42.
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Modeling with Recurrence Relations

•Another example:
•Let an denote the number of bit strings of length n 
that do not have two consecutive 0s (“valid strings”). 
Find a recurrence relation and give initial conditions 
for the sequence {an}.

•Solution:
•Idea: The number of valid strings equals the 
number of valid strings ending with a 0 plus the 
number of valid strings ending with a 1.
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Modeling with Recurrence Relations
•Let us assume that n ≥ 3, so that the string contains 
at least 3 bits.
•Let us further assume that we know the number an-1
of valid strings of length (n – 1) and the number an-2
of valid strings of length (n – 2). 
•Then how many valid strings of length n are there, if 
the string ends with a 1?
•There are an-1 such strings, namely the set of valid 
strings of length (n – 1) with a 1 appended to them.
•Note: Whenever we append a 1 to a valid string, 
that string remains valid.
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Modeling with Recurrence Relations
•Now we need to know: How many valid strings of 
length n are there, if the string ends with a 0?
•Valid strings of length n ending with a 0 must have 
a 1 as their (n – 1)st bit (otherwise they would end 
with 00 and would not be valid).
•And what is the number of valid strings of length 
(n – 1) that end with a 1?
•We already know that there are an-1 strings of length 
n that end with a 1.
•Therefore, there are an-2 strings of length (n – 1) 
that end with a 1.
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Modeling with Recurrence Relations

•So there are an-2 valid strings of length n that end 
with a 0 (all valid strings of length (n – 2) with 10 
appended to them).

•As we said before, the number of valid strings is the 
number of valid strings ending with a 0 plus the 
number of valid strings ending with a 1.

•That gives us the following recurrence relation:
•an = an-1 + an-2
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Modeling with Recurrence Relations
•What are the initial conditions?

•a1 = 2 (0 and 1)
•a2 = 3 (01, 10, and 11)
•a3 = a2 + a1 = 3 + 2 = 5
•a4 = a3 + a2 = 5 + 3 = 8
•a5 = a4 + a3 = 8 + 5 = 13
•…

•This sequence satisfies the same recurrence 
relation as  the Fibonacci sequence.
•Since a1 = f3 and a2 = f4, we have an = fn+2.
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Solving Recurrence Relations

•In general, we would prefer to have an explicit  
formula to compute the value of an rather than 
conducting n iterations.

•For one class of recurrence relations, we can obtain 
such formulas in a systematic way.

•Those are the recurrence relations that express the 
terms of a sequence as linear combinations of 
previous terms.
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Solving Recurrence Relations

•Definition: A linear homogeneous recurrence 
relation of degree k with constant coefficients is a 
recurrence relation of the form:
•an = c1an-1 + c2an-2 + … + ckan-k,
•Where c1, c2, …, ck are real numbers, and ck ≠ 0. 

•A sequence satisfying such a recurrence relation is 
uniquely determined by the recurrence relation and 
the k initial conditions

•a0 = C0, a1 = C1, a2 = C2, …, ak-1 = Ck-1.
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Solving Recurrence Relations
•Why are they called linear?  
If {xn} & {yn} are solutions of 

an = Σj=1
kcjan-j then

{uxn + vyn} is a solution, for u,v real.

•uxn = uΣj=1
k cjxn-j = Σj=1

k cjuxn-j , 
and more generally, 

•uxn+vyn = uΣj=1
k cjxn-j + vΣj=1

k cjyn-j
= Σj=1

k cj(uxn-j + vyn-i)
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Solving Recurrence Relations

•Examples:
•The recurrence relation Pn = (1.05)Pn-1
•is a linear homogeneous recurrence relation of 
degree one.
•The recurrence relation fn = fn-1 + fn-2
•is a linear homogeneous recurrence relation of 
degree two.
•The recurrence relation an = an-5
•is a linear homogeneous recurrence relation of 
degree five.
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Solving Recurrence Relations
•Basically, when solving such recurrence relations, 
we try to find solutions of the form an = rn, where r is 
a constant.
•an = rn is a solution of the recurrence relation
an = c1an-1 + c2an-2 + … + ckan-k if and only if
•rn = c1rn-1 + c2rn-2 + … + ckrn-k.
•Divide this equation by rn-k and subtract the right-
hand side from the left:
•rk - c1rk-1 - c2rk-2 - … - ck-1r - ck = 0
•This is called the characteristic equation of the 
recurrence relation.
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Solving Recurrence Relations
•The solutions of this equation are called the 
characteristic roots of the recurrence relation.

•Let us consider linear homogeneous recurrence 
relations of degree two.

•Theorem: Let c1 and c2 be real numbers. Suppose 
that r2 – c1r – c2 = 0 has two distinct roots r1 and r2.
•Then the sequence {an} is a solution of the recurrence 
relation an = c1an-1 + c2an-2 if and only if an = α1r1

n + 
α2r2

n for n = 0, 1, 2, …, where α1 and α2 are constants.

•See page 515 (6th Edition: pp. 414 and 415) 
for the proof.
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Solving Recurrence Relations

•Example: What is the solution of the recurrence 
relation an = an-1 + 2an-2 with a0 = 2 and a1 = 7 ?

•Solution: The characteristic equation of the 
recurrence relation is r2 – r – 2 = 0.
•Its roots are r = 2 and r = -1.
•Hence, the sequence {an} is a solution to the 
recurrence relation if and only if:
•an = α12n + α2(-1)n for some constants α1 and α2.
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Solving Recurrence Relations
•Given the equation an = α12n + α2(-1)n and the initial 
conditions a0 = 2 and a1 = 7, it follows that
•a0 = 2 = α1 + α2

•a1 = 7 = α1⋅2 + α2 ⋅(-1)

•Solving these two equations gives us
α1 = 3 and α2 = -1.

•Therefore, the solution to the recurrence relation and 
initial conditions is the sequence {an} with
•an = 3⋅2n – (-1)n. 
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Solving Recurrence Relations

•Another Example: Give an explicit formula for the 
Fibonacci numbers.
•Solution: The Fibonacci numbers satisfy the 
recurrence relation fn = fn-1 + fn-2 with initial conditions f0
= 0 and f1 = 1.
•The characteristic equation is r2 – r – 1 = 0.
•Its roots are
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Solving Recurrence Relations
•Therefore, the Fibonacci numbers are given by
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for some constants α1 and α2.
We can determine values for these constants so that the sequence meets the 

conditions f0 = 0 and f1 = 1:

Solving Recurrence Relations

•The unique solution to this system of two equations 
and two variables is
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So finally we obtained an explicit formula for the Fibonacci numbers:



13 Oct 2015

8

Solving Recurrence Relations

•But what happens if the characteristic equation has 
only one root?
•How can we then match our equation with the initial 
conditions a0 and a1 ?
•Theorem: Let c1 and c2 be real numbers with c2 ≠ 0. 
Suppose that r2 – c1r – c2 = 0 has only one root r0. 
A sequence {an} is a solution of the recurrence 
relation an = c1an-1 + c2an-2 if and only if 
an = α1r0

n + α2nr0
n, for n = 0, 1, 2, …, where α1 and α2

are constants.     (Theorem 2, page 517)
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Solving Recurrence Relations
•Example: What is the solution of the recurrence 
relation an = 6an-1 – 9an-2 with a0 = 1 and a1 = 6?
•Solution: The only root of r2 – 6r + 9 = 0 is r0 = 3.
Hence, the solution to the recurrence relation is
•an = α13n + α2n3n for some constants α1 and α2.
•To match the initial condition, we need
•a0 = 1 = α1
a1 = 6 = α1⋅3 + α2⋅3
•Solving these equations yields α1 = 1 and α2 = 1.
•Consequently, the overall solution is given by
•an = 3n + n3n.
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Divide-and-Conquer Recurrences
•Some algorithms take a problem and successively 
divide it into one or more smaller problems until there 
is a trivial solution to them.
•For example, the binary search algorithm recursively 
divides the input into two halves and eliminates the 
irrelevant half until only one relevant element 
remained.
•This technique is called “divide and conquer”.
•We can use recurrence relations to analyze the 
complexity of such algorithms.
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Divide-and-Conquer Recurrences
•Suppose that an algorithm divides a problem (input) 
of size n into a subproblems, where each subproblem 
is of size n/b. Assume that g(n) operations are 
performed for such a division of a problem.
•Then, if f(n) represents the number of operations 
required to solve the problem, it follows that f satisfies 
the recurrence relation
•f(n) = af(n/b) + g(n).
•This is called a divide-and-conquer recurrence 
relation.
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Divide-and-Conquer Recurrences
•Example: The binary search algorithm reduces the 
search for an element in a search sequence of size n
to the binary search for this element in a search 
sequence of size n/2 (if n is even).
•Two comparisons are needed to perform this 
reduction.
•Hence, if f(n) is the number of comparisons required 
to search for an element in a search sequence of size 
n, then
•f(n) = f(n/2) + 2 if n is even.


