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Fast Multiplication of Integers

Example 4, p. 528 (p. 475, 6th ed), 
shows a method of multiplying 2n 
bit integers which is more efficient 
than the standard method shown in 
Example 10, p. 252 (p.225 6th ed).  
This is interesting, but somewhat 
technical and is left to the curiosity 
of the ambitious reader.
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Fast Matrix Multiplication
Example 5, p. 529 ( p.476, 6th ed) describes a 

method for matrix multiplication of a 2n x 2n 
matrix which works by manipulating the main
n x n blocks to improve efficiency. 

If f(n) is the number of multiplications and 
additions used, it turns out that 

f(n) = 7f(n/2) + 15n2/4
We apply this by embedding our matrix in a 

matrix of size n = 2k and repeatedly dividing by 
2, and estimating the form of our recurrence 
relation for f.
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f(n) = 7f(n/2) + 15n2/4 has the form
f(n) = af(n/b) + g(n) [now apply this formula again]

= a2f(n/b2) + ag(n/b) + g(n)
= a3f(n/b3) + a2g(n/b2) + ag(n/b) + g(n)
= …
= akf(n/bk) + Σj=0

k-1 ajg(n/bj) [now use n=bk]
= akf(1) + Σj=0

k-1 ajg(n/bj) 
= akf(1) + Σj=0

k-1 ajg(bk-j) 
It turns out that this type of formula can be 

used to estimate the big-O growth of f.
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Divide-and-Conquer Recurrences

Usually, we do not try to solve such 
divide-and conquer recurrences, but we 
use them to derive a big-O estimate for 
the complexity of an algorithm.
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Divide & Conquer, first theorem
Theorem 1 (see p 530, p 477, 6th ed). If f is 

an increasing function satisfying:
f(n) = af(n/b) + c,  b|n, b>1 an integer and 
c>0 real then
if a > 1 then f(n) is O(n^logba)
if a = 1 then f(n) is O(log n).

If n = bk, k > 0 an integer then
f(n) = C1n^logba + C2. (^ means power)

C1 = f(1) + c/(a-1),     C2 = -c/(a – 1)
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Proof: to iterate, assume n = bk.(else bound n above by bk)

f(n) = af(n/b) + c.
= a(af(n/b2) + c) + c = a2f(n/b2) + ac + c
= a3f(n/b3) + a2c + ac + c = …
= akf(n/bk) + cΣi=0

k-1ai = akf(1) + cΣi=0
k-1ai ,(geometric series)

Case 1: a = 1:  f(n) = f(1) + ck = f(1) + clogbn
Case 2: a > 1: f(n) = akf(1) + c(ak – 1)/(a – 1)
= ak[f(1) + c/(a-1)]– c/(a-1)  (used geometric series formula)

= un^logba + v, since ak = a^logbn = n^logba
Note: log(uv) = vlog(u), so 
log(alog(n))= log(n)log(a) = log(nlog(a)).
So alog(n) = nlog(a) .   Here log means logb
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Divide-and-Conquer

Example 7 p. 531 (p 478, 6th ed) using Theorem 1:

For binary search, we have the number of operations
f(n) = f(n/2) + 2, so a = 1, c = 2.

Consequently, by theorem 1, 
f(n) is O(log n).

The binary search algorithm has logarithmic time 
complexity.
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Divide-and-Conquer

Theorem 2: (p 532. p 479 6th ed. No proof here)
Let f be an increasing function that satisfies the 
recurrence relation 
f(n) = af(n/b) + cnd

whenever n = bk, where k is a positive integer, 
a, c, and d are real numbers with a ≥ 1, and b is 
an integer greater than 1. Then f(n) is 
O(nd), if a < bd,
O(nd log n) if a = bd,
O(nlogba) if a > bd
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Divide-and-Conquer

Example 7 p. 531 using Theorem2:

For binary search, we have the number of operations
f(n) = f(n/2) + 2, so a = 1, b = 2, and d = 0
(d = 0 because here, g(n) does not depend on n).

Consequently, a = bd, and therefore, 
f(n) is O(nd log n) = O(log n).

The binary search algorithm has logarithmic time 
complexity.
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Divide-and-Conquer

Example 11, p532 (p479 6th ed). 
Fast matrix multiplication  of n x n 

matrices uses f(n) = 7f(n/2) + 15n2/4  
additions and multiplications, so by Th. 
2, since  7 > 22, ( a > bd) 
f(n) is O(nlog7), and log27 ~ 2.8.
The standard method of multiplying 
matrices is O(n3).
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Let’s look at …

Relations
(Chapter 9)
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Relations
If we want to describe a relationship between 
elements of two sets A and B, we can use ordered 
pairs with their first element taken from A and  their 
second element taken from B. 
Since this is a relation between two sets, it is called a 
binary relation.

Definition: Let A and B be sets. A binary relation from 
A to B is a subset of A×B.

In other words, for a binary relation R we have 
R ⊆ A×B. We use the notation aRb to denote that (a, 
b)∈R and aRb to denote that (a, b)∉R.
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Relations
When (a, b) belongs to R, a is said to be related to b 
by R.
Example: Let P be a set of people, C be a set of cars, 
and D be the relation describing which person drives 
which car(s).
P = {Carl, Suzanne, Peter, Carla}, 
C = {Mercedes, BMW, tricycle}
D = {(Carl, Mercedes), (Suzanne, Mercedes),

(Suzanne, BMW), (Peter, tricycle)}
This means that Carl drives a Mercedes, Suzanne 
drives a Mercedes and a BMW, Peter drives a tricycle, 
and Carla does not drive any of these vehicles.
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Functions as Relations
You might remember that a function f from a set A to 
a set B assigns a unique element of B to each 
element of A.
The graph of f is the set of ordered pairs (a, b) such 
that b = f(a).
Since the graph of f is a subset of A×B, it is a relation
from A to B.
Moreover, for each element a of A, there is exactly 
one ordered pair in the graph that has a as its first 
element.
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Functions as Relations

Conversely, if R is a relation from A to B such that 
every element in A is the first element of exactly one 
ordered pair of R, then a function can be defined with 
R as its graph.

This is done by assigning to an element a∈A the 
unique element b∈B such that (a, b)∈R.

15 Oct 2015 CS 320 16

Relations on a Set

Definition: A relation on the set A is a relation from A 
to A.

In other words, a relation on the set A is a subset of 
A×A.

Example: Let A = {1, 2, 3, 4}. Which ordered pairs are 
in the relation R = {(a, b) | a < b} ?
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Relations on a Set
Solution: R = {(1, 2), (1, 3), (1, 4), (2, 3),(2, 4),(3, 4)}

R 1 2 3 4

1

2

3

4

1 1

2

3

4

2

3

4

X X X

X X

X
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Relations on a Set
How many different relations can we define on a 
set A with n elements?
A relation on a set A is a subset of A×A.
How many elements are in A×A ?

There are n2 elements in A×A, so how many subsets 
(= relations on A) does A×A have?

The number of subsets that we can form out of a set 
with m elements is 2m. Therefore, 2n2 subsets can be 
formed out of A×A.

Answer: We can define 2n2 different relations 
on A.
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Properties of Relations
We will now look at some useful ways to classify 
relations.
Definition: A relation R on a set A is called reflexive
if (a, a)∈R for every element a∈A.
Are the following relations on {1, 2, 3, 4} reflexive?

R = {(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)} No.
R = {(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)} Yes.
R = {(1, 1), (2, 2), (3, 3)} No.

Definition: A relation on a set A is called irreflexive if 
(a, a)∉R for every element a∈A.
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Properties of Relations

Definitions:

A relation R on a set A is called symmetric if (b, a)∈R 
whenever (a, b)∈R for all a, b∈A. 

A relation R on a set A is called antisymmetric if 
a = b whenever (a, b)∈R and (b, a)∈R.

A relation R on a set A is called asymmetric if 
(a, b)∈R implies that (b, a)∉R for all a, b∈A. 
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Properties of Relations
Are the following relations on {1, 2, 3, 4} 
symmetric, antisymmetric, or asymmetric?

R = {(1, 1), (1, 2), (2, 1), (3, 3), (4, 4)} symmetric
R = {(1, 1)} sym. and 

antisym.

R = {(1, 3), (3, 2), (2, 1)} antisym. 
and asym.

R = {(4, 4), (3, 3), (1, 4)} antisym.
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Properties of Relations
Definition: A relation R on a set A is called transitive
if whenever (a, b)∈R and (b, c)∈R, then (a, c)∈R for 
a, b, c∈A. 

Are the following relations on {1, 2, 3, 4} 
transitive?

R = {(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)} Yes.

R = {(1, 3), (3, 2), (2, 1)} No.

R = {(2, 4), (4, 3), (2, 3), (4, 1)} No.
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Counting Relations
Example: How many different reflexive relations can 
be defined on a set A containing n elements?

Solution: Relations on R are subsets of A×A, which 
contains n2 elements.
Therefore, different relations on A can be generated 
by choosing different subsets out of these n2

elements, so there are 2n2 relations.
A reflexive relation, however, must contain the n 
elements (a, a) for every a∈A.
Consequently, we can only choose among n2 – n = 
n(n – 1) elements to generate reflexive relations, so 
there are 2n(n – 1) of them.
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Combining Relations

Relations are sets, and therefore, we can apply the 
usual set operations to them.

If we have two relations R1 and R2, and both of them 
are from a set A to a set B, then we can combine 
them to R1 ∪ R2, R1 ∩ R2, or R1 – R2.

In each case, the result will be another relation from 
A to B.
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Combining Relations
… and there is another important way to combine 
relations.
Definition: Let R be a relation from a set A to a set B 
and S a relation from B to a set C. The composite of 
R and S is the relation consisting of ordered pairs (a, 
c), where a∈A, c∈C, and for which there exists an 
element b∈B such that (a, b)∈R and 
(b, c)∈S. We denote the composite of R and S by
S°R.

In other words, if relation R contains a pair (a, b) and 
relation S contains a pair (b, c), then S°R contains a 
pair (a, c).
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Combining Relations
Example: Let D and S be relations on A = {1, 2, 3, 4}.
D = {(a, b) | b = 5 - a}     “b equals (5 – a)”
S = {(a, b) | a < b}        “a is smaller than b”

D = {(1, 4), (2, 3), (3, 2), (4, 1)}
S = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}
S°D = { (2, 4), (3, 3), (3, 4), (4, 2), (4, 3),

D maps an element a to the element (5 – a), and 
afterwards S maps (5 – a) to all elements larger than 
(5 – a), resulting in S°D = {(a,b) | b > 5 – a} or S°D = 
{(a,b) | a + b > 5}.

(4, 4)}
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Combining Relations

We already know that functions are just 
special cases of relations (namely those that 
map each element in the domain onto exactly 
one element in the codomain).

If we formally convert two functions into 
relations, that is, write them down as sets of 
ordered pairs, the composite of these relations 
will be exactly the same as the composite of 
the functions (as defined earlier).
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Combining Relations

Definition: Let R be a relation on the set A. The 
powers Rn, n = 1, 2, 3, …, are defined inductively by
R1 = R
Rn+1 = Rn°R

In other words:
Rn = R°R° … °R  (n times the letter R)
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Combining Relations
Theorem: The relation R on a set A is transitive if and 
only if Rn ⊆ R for all positive integers n. 
Remember the definition of transitivity:
Definition: A relation R on a set A is called transitive 
if whenever (a, b)∈R and (b, c)∈R, then (a, c)∈R for 
a, b, c∈A. 
The composite of R with itself contains exactly these 
pairs (a, c). 
Therefore, for a transitive relation R, R°R does not 
contain any pairs that are not in R, so R°R ⊆ R.
Since R°R does not introduce any pairs that are not 
already in R, it must also be true that (R°R)°R ⊆ R, 
and so on, so that Rn ⊆ R.
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Combining Relations
Another Example: Let X and Y be relations on 
A = {1, 2, 3, …}.
X = {(a, b) | b = a + 1}     “b equals a plus 1”
Y = {(a, b) | b = 3a}         “b equals 3 times a”

X = {(1, 2), (2, 3), (3, 4), (4, 5), …}
Y = {(1, 3), (2, 6), (3, 9), (4, 12), …}
X°Y = { (1, 4), (2, 7), (3, 10), (4, 13), …}

Y maps an element a to the element 3a, and 
afterwards X maps 3a to 3a + 1. 
X°Y = {(a,b) | b = 3a + 1}
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n-ary Relations

In order to study an interesting application of relations, 
namely databases, we first need to generalize the 
concept of binary relations to n-ary relations.

Definition: Let A1, A2, …, An be sets. An n-ary 
relation on these sets is a subset of A1×A2×…×An.
The sets A1, A2, …, An are called the domains of the 
relation, and n is called its degree.

15 Oct 2015 CS 320 32

n-ary Relations
Example:
Let R = {(a, b, c) | a = 2b ∧ b = 2c with a, b, c∈Z}
What is the degree of R?
The degree of R is 3, since its elements are triples.
What are its domains?
Its domains are all equal to the set of integers.
Is (2, 4, 8) in R?
No.
Is (4, 2, 1) in R?
Yes.


